1. 博弈论博弈论的主要研究内容
博弈论的概念
博弈论又被称为对策论(Games Theory),是研究具有斗争或竞争性 质现象的理论和方法,它既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论的发展
博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。谈到博弈论就不能忽略博弈论天才纳什,纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。 此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的的学科。
博弈论的基本概念
博弈要素
(1)局中人:在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。
(2)策略:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。
(3)得失:一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。
(4)对于博弈参与者来说,存在着一博弈结果
(5)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。
纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。
这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。
对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。
有了上述定义,就立即得到纳什定理:
任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。
纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。
纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。
但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。
塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。
博弈的类型
(1)合作博弈——研究人们达成合作时如何分配合作得到的收益,即收益分配问题。
(2)非合作博弈——研究人们在利益相互影响的局势中如何选决策使自己的收益最大,即策略选择问题。
(3)完全信息不完全信息博弈:参与者对所有参与者的策略空间及策略组合下的支付有充了解称为完全信息;反之,则称为不完全信息。
(4)静态博弈和动态博弈
静态博弈:指参与者同时采取行动,或者尽管有先后顺序,但后行动者不知道先行动者的策略。
动态博弈:指双方的的行动有先后顺序并且后行动者可以知道先行动者的策略。
财产分配问题和夏普里值(Shapley value)
考虑这样一个合作博弈:a、b、c、投票决定如何分配100万,他们分别拥有50%、40%、10%的权力,规则规定,当超过50%的票认可了某种方案时才能通过。那么如何分配才是合理的呢?按票力分配,a50万、b40万、c10万c向a提出:a70万、b0、c30万b向a提出:a80万、b20万、c0……
权力指数:每个决策者在决策时的权力体现在他在形成的获胜联盟中的“关键加入者”的个数,这个“关键加入者”的个数就被称为权利指数。
夏普里值:在各种可能的联盟次序下,参与者对联盟的边际贡献之和除以各种可能的联盟组合。
次序 abc acb bac bca cab cba
关键加入者 a c a c a b
由此计算出a,b,c的夏普里值分别为4/6,1/6,1/6
所以a,b,c应分别获得100万的2/3,1/6,1/6。
博弈论的意义
弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。
基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型利用这三种表述形式,可以研究形形色色的问题。因此,它被称为“社会科学的数学”从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。
博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博弈论是个非常重要的理论概念。
什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…
面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。
2. 博弈论的内容简介
《博弈圣经》中《人类未知的蓝色档案》一文给出了博弈论的定义:“我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。”
博弈圣经著作人说;博弈论是青年人的毒品,是无知者的兴奋剂,是沉默者的摇头丸。
博弈圣经著作人说;博弈是宇宙的宗教。博弈的使命是探索自然界里和思维世界里,所显示出来的崇高、庄严、不可思议的秩序。人们对宇宙,实体、知识、未知的神秘,以及对个体,性质、经验、已知的恐惧——产生了宗教。人们认识到,有某种为我们所不能洞察的东西存在其中,感觉到那种最原始的形式、最深奥的理性、最灿烂的壮美、所产生的博弈情感,构成了真正的宗教感情。没有宗教、没有信仰、没有博弈感情,就不会出现伟人。
博弈论 就是张冠李戴 捕风捉影 以讹传讹
《博弈圣经》【典故】讽刺博弈论的最高博弈水平
有人问博弈圣经著作人,什么是博弈论。
他回答说;博弈论就是,一问、二答、三无知。
也就是说;问者无知、回答者无知、听者更无知。
有人追问,到目前为止,那么多博弈论图书,那么多作者,他们的最高博弈水平是什么?
博弈圣经著作人一听就笑了;目前他们的最高博弈水平,就是想卖给你一本书,赢你一本书钱。
博弈圣经著作人通俗的谈;菜鸟与金鸟,
一个人想变得伟大,从一个菜鸟变成一个金鸟,就要利用国家实体特性造个金鸟笼。日后,就可以在媒体的报道中、绘声绘色地描述那个金鸟笼;他是某某大学院校、某某著名教授、某某首席科学家、某某诺贝尔奖得主、甚至某某政府官员,他就自然地钻进了金鸟笼。
博弈论理论,它是太过于急躁、太过于草率的理论。由于博弈论新奇、古怪、原始,一个“囚徒困境”的三维谜团像似神话,人们又错误地认为博弈论能够取胜,因此受到了人们盲目的吹捧和疯狂的参与。人们把博弈取胜的欲望作为动力,一个人有了欲望,就要有实现欲望的对象和背景,加上自己行为的结果,才能取得想要的东西。博弈竞争的欲望在远古就出现了。欲望的天性就是进行交往,建立行为二特性对局,就是博弈的合作。
《博弈圣经》中赢的定义;赢不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的随机状态中,一粒期望的粒子优先达成。
赢也不是福,输也不是罪,输赢与均衡属于第三空地论的内容。
但明眼的人都能看得出,他抄来的无效理论编成的一本本博弈论,就是张冠李戴、捕风捉影、“以讹传讹”,不管他从外国哪个地方抄来的,不管他抄了多少、编了多少本书、多少篇文章,究其低劣的学术品质,他仍然是一个菜鸟。
假如博弈论大师,走出那个金鸟笼,再靠讲课赚大钱,靠卖书赚小钱,靠博弈取胜策略赚不到一毛钱,他就是骗子,也许是一个罪犯。
更为讽刺的是,一本本博弈论著作,古老的内容千篇一律,里面没有几句精彩的话,没有几个经典的词,更没有定理、定律、定义和法则。至今一个个博弈论专家、矛盾论专家、概率论专家和外行知道得一样多。
博弈圣经著作人无奈的写道,世界上有四大无聊的精神释放
当我们听到;僧人的诵经声,必定是印度;
当我们听到;足球场万人的狂吼声,必定是欧洲;
当我们听到;巷子里哗啦啦的麻将声,必定是中国;
当我们听到;喇叭中传出“马克思主义”的高喊声,必定是中.共.高.官.在开会。
博弈圣经著作人笑谈中国共.产.党.与.马.克.思;“马克思是.中.共.高.官的麻将,玩了半个多世纪,没有玩出个名堂。”
博弈圣经著作人认为;中国新领导人的未来、将面临最大的理论困难、是继承历代遗留下的、所谓政治指导思想,点名报到的名单越来越长;中国共产党以马克思列宁主义、毛泽东思想、邓小平理论、三个代表、科学发展观的重要指导思想,既一脉相承又与时俱进的科学理论……。中学语文老师看到中共党媒的这个语句结构、脸皮薄了就脸红,听者无奈,无所是从。
根据中共党一贯提倡的马克思主义就是拼命斗争,矛盾论就是你死我活的二维世界,所以中国人什么都敢做,什么都敢说。党媒理论吹得越大,共产党越丢人。
新领导人的理论语言已经向,国家实体、民簇社会、个人梦想,悄悄地转向。
理论的意义在于创造意识形态,提取积极的思想因素推动社会向前发展。你们看看意识形态到底是什么,我搜一段发来咱们一同欣赏。
【出处】《科学家濒临死亡前的四个反应》一文《博弈圣经》意识形态的定义;意识形态,就是一段无声流动的电影画面。
你们读一篇来自国务院发展研究中心博弈圣经著作人的经典文章,《科学发展观在博弈世界中运动》一文,搜索就有,一篇文章的含金量,超过中共党理论专家的100本书。
向你们介绍一篇由博弈圣经著作人撰稿的经典美文《科学发展观来自真理的方向》一文,他为中共中央理论网,为党理论的语言创新、语言转向,提供的范本。其内容摘要作为《科学发展观知识手册》一书介绍。
博弈圣经著作人撰稿的、也是最具代表性的一篇,<《博弈圣经》与科学发展观的特征>一文,他用三维逻辑的博弈哲学给出了科学发展观的四个特征,并被编辑在科学发展观的内容之中,也是当代被人们引用最多的理论精品。
来源:美国资讯网 博弈圣经;经济学世界十部经典著作
1、亚当斯密(英国)《国富论》。斯密此书是现代经济学的奠基之作,也是最伟大的经济学著作。他的劳动价值论,分工与专业化是经济效率之源的理论,“看不见的手”实体经济特性与性质自由主义理论,对后人博弈实体经济学的启发,对经济学的贡献堪比牛顿对物理学的贡献。
2、曹国正(新加坡)《博弈圣经》。独创了国正论、国正双赢理论和粒子行为论,是新加坡政府认定的一部,影响人类非物质文化的经济学高级学术著作,他的粒子基因的映射均衡和单方占优的博弈取胜理论,引起世界政治、经济、军事、外交、科学,自然哲学和博弈论界的极大关注。
3、大卫李嘉图(英国)《政治经济学与赋税原理》(第一卷)。李嘉图是伦敦交易所里成功的投机商人,又能在经济学理论领域做出不朽贡献。本书中他阐明的比较优势理论是现代自由贸易政策的理论基础。
4、马克思(德国)《资本论》。马克思的剩余价值理论,人人耳熟能详,就其概述的经济学现象对改变世界的力量之大,入选了最重要的经济学著作。
5、瓦尔拉斯(法国)《纯粹经济学要义》。现代经济学的主观价值(效用)论、边际革命、经济学数理化的转向通过本书而系统化,熊彼特曾赞誉此书为,经济学所取得的最高成就。
6、费雪(美国)《利息理论》。此书是迄今为止最伟大的关于资本理论的研究,在马克思发现剩余价值的地方,他看见的是放弃当前消费而承担未来的不确定性风险,所获得的报酬。
7、凯恩斯(英国)《就业、利息和货币通论》。被称为宏观经济学的奠基者,他最重要的理论认为,理性通过个人性质与性质的自由竞争会自然产生社会理性,就这一理论遭到了质疑和批判,其争议的主要原因,是来自社会的理性遇到国家政治干预时缺失了博弈实体政治的理论。
8、马歇尔(英国)《经济学原理》。马歇尔的最主要著作是1890年出版的《经济学原理》一书,被西方经济学界公认为划时代的著作,也是继《国富论》之后最伟大的经济学著作。该书所阐述的经济学说,在西方经济学中一直占据着支配地位。
9、萨缪尔逊(美国)《经济学》。把一本教科书选为最重要的经济学著作,也是发行量最大的经济学教科书,他在经济学知识的标准化、体系化方面做出的贡献,比当代任何一个人都多,就其入选最重要的经济学著作。
10、布坎南(美国)《同意的计算》。本书开创的“公共选择”理论,使宪政民主制可以用数理工具定量分析和定量运算,人们用他的理论研究政治与经济制度的形成,开辟了全新的路径。
来源:美闻网-美国资讯第一门户
3. 在国内上映的国产电影和引进电影都是如何在档期上博弈的
整体盘子来看,是特别有趣的。比如《变四》上映期间,正常的逻辑都是避开这个档期,大部分电影也都是这么做的。但是《分手大师》却在同一天就上了,侧面叫板,吃准了一定有一帮人是不爱看变四的,而且当时也没有什么好电影可以选。需要看具体情况来分析案例。如果碰上好莱坞 A 级制作,基本的策略都是避开。国产电影很少提早宣布档期的原因特别简单,就是因为影视工业不成熟,初具雏形。Disney 敢说自己某部电影两年后的某一天上线,是因为有一套成熟的工业逻辑在支撑它,就是能够这么精确。
4. 用博弈论解决电影上市问题
相隔十五天不需要推迟,A有足够时间获得票房与关注度,若相隔时间短,两部精彩的影片同台博弈反而能促进对比消费,增加收益。若A的关注度明显小于B,则由博弈论,A应当既做对个体有利,又做对整体有利的事,A选择暂时退出可以避免市场达到饱和值,从而增加收益。
5. 博弈论的经典模型
经济学中的“智猪博弈”(Pigs’payoffs)
这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。投食仅原来的一半分量。结果是小猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。投食为原来的一倍分量。结果是小猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费完。
对于游戏设计者,这是一个最好的方案。成本不高,但收获最大。
原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。
博弈论的经典模型:威慑模型
威慑博弈的完整名称是进入威慑博弈,是研究参与者想进入某领域,而与该领域已有竞争者的博弈模型。假定有两个参与人,一个想进入某行业,称之为进入者,另一个已在同一行业占有一席之地,称之为先入者。对进入者来说,不管先入者是否设置壁垒,其最优目标都是进入。而对先入者来说,要设置壁垒,必须付出巨大成本,否则不如默许。进入威慑博弈模型的启示是:要做一件事情,必须确定一个可行的目标,不怕困难,全力以赴向目标努力,目标就会实现。另外,不是所有的威慑都没有用处,付出巨大成本的威慑是起作用的,而要想使威慑起作用的,必须付出巨大成本。同时,进入威慑博弈也提出了一个问题,就是威胁和承诺的可信度问题,威胁实际上也是一种承诺。威胁和承诺是否可行,取决于其成本的大小,取决于其成本和收益的比较。一般而言,成本巨大的,或者成本高于收益的威胁和承诺,可信度就比较高,反之则低。实际生活中有些制度见效甚微,就是因为惩罚力度太小,使得违规者的违规收益高于违规成本。
博弈论的经典模型:斗鸡模型
斗鸡博弈(Chicken Game).在西方,鸡是胆小的象征,斗鸡博弈指在竞争关系中,谁的胆小,谁先失败。现在假设,有两个人要过一条独木桥,这条桥一次只能过一个人,两个人同时相向而进,在河中间碰上了。这个博弈的结果第一种就是如果两个人继续前进,双方都会掉水里,双方丢面子,这是一种组合。第二种是,双方都退下来,双方也都是丢面子,但是都掉不到水里去。第三种结果,甲方退下来,丢面子,乙过去。第四种结果,乙退下来,丢面子,甲顺利通过。在这四种结果中,第一种是两败俱伤;三、四两种是一胜一败,第二种是两败不伤,这就是斗鸡博弈。在这个模型中,最优策略有两个,就是第三、第四两种选择,即甲退下来乙先过去,或者乙退下来甲先过去。因为两种选择对整个社会来说效益最大,损失最小。两虎相争勇者胜,如何处理竞争中的两虎关系呢?一般有四种办法:第一种是谈判,双方约定一个条件,其中一个先退下来;第二种是制度,建立一种制度,规定从南到北的先退,或者从北到南的先退,或者后上桥者先退;第三种是时间,双方僵持一段时间,谁先吃不住劲谁先退;第四种是妥协,妥协不一定是最优策略,但是至少可以保证取得次优结果。在工作生活中乃至处理国际关系时,得饶人处且饶人,退
博弈论的经典模型:情侣博弈
情侣博弈。假定一对热恋中的情侣,每周末见一次,必须见,否则活不下去。男的喜欢看足球,女的喜欢看电影。见面后,面临选择,看足球还是看电影?热恋中的情侣因为爱,会牺牲自己的爱好去满足对方。如果去看足球,男的满足程度为四个单位,女的满足程度是两个单位;去看电影,女的满足程度是四个单位,男的满足程度是两个单位。在这个博弈中,有三个变量非常重要。一个变量是顺序,就是谁先提出来,比如男的先提出来,女方尽管更愿意看电影,但是男方已经提出来了,她不愿意违背他,只好同意,结果他们就去看足球。相反的情况也是一样。第二个是一次博弈还是多次博弈。如果是多次博弈,双方就会大体上形成一种默契,这一周看电影,下一周看足球。第三个取决于感情的深度。处于依赖程度比较高的一方,对对方更加顺从照顾一些。一般而言,情侣之间的博弈是一个动态过程,因为恋爱就是双方之间较长时期的磨合、了解过程。如果我们假定情侣博弈是一个动态博弈,而且总是男的先决策,女的后决策,那么就会出现一种非常有趣的决策情景。就女方来说,无论男的是选择足球,还是选择电影,她的决策均为四个:一个是追随决策,就是男的选择什么,她就选择什么;二是对抗策略,就是男的选择什么,她偏不选什么;三是偏好策略,就是无论男的选什么,她都选电影,因为这是她的偏好;四是成全策略,就是无论男的选什么,她都选足球,因为足球是男的偏好,她宁可牺牲自己的偏好,而成全男方。情侣博弈在现实生活中到处存在,它让人们思考如何人去关心别人、理解别人,处理好人际关系。
一步还扩天空,都是从斗鸡博弈可以总结出的道理。
6. 求一些关于博弈论的电影(如美丽心灵)
其实你用理论的眼光看待,《三国演义》是最佳选择
莱昂纳多·迪卡普里奥的《猫鼠游戏》可以看看
7. 从博弈论角度,百货公司的节日档期促销活动都差不多,方案大同小异…有点急呀可爱们!
这个就是典型的囚徒困境。设开展促销活动为C,不开展促销活动为D。
(1)全员都选C的时候,顾客是平均到每家店的,所以此时每家店铺的收入是一样的
(2)但如果此时有一家店铺选择了D,由于有折扣活动,所以到这家店铺的顾客数量会增多,总体上其收入会比(1)要多(收入上顾客增多收入增加,但折扣活动使得收入减少,总体来说收入增加)
所以全员都选C并不是纳什均衡,而且就如(2)的分析一样,之后会有第二家店铺也会选D,第三家,第四家。。。直至所有店铺都会选D
(3)全员都选D的时候,任何一家店铺选C,都会导致顾客减少,收入减少,因此没有店铺会选择D,所以全员都选D是纳什均衡。
-----------------
这个其实和高跟鞋效应是一样的。
8. 求有关博弈论的电影。或者生活中的一些有关博弈论的事
在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoner's dilemma)博弈模型。该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果两个犯罪嫌疑人都坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪,各被判刑8年;如果只有一个犯罪嫌疑人坦白,另一个人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。下表给出了这个博弈的支付矩阵。 囚徒困境博弈 [Prisoner's dilemma] A╲B 坦白 抵赖
坦白 -8,-8 0,-10
抵赖 -10,0 -1,-1
电影貌似没什么了。给个悬赏吧
9. 如何用博弈论来分析两部电影大片的档期,以做出最佳决策
要做博弈,不可缺少的要素是博弈双方,互相的策略,对应策略的收益,这样才能做决策。
博弈双方,很明确;
互相的策略就是推测对方可能会选择什么时候上映,这个选择也不多,无非是暑期档前还是暑期档开始后;
那么接下来就是根据不同选择的收益来决定选择。
这个就是市场部通过调研,统计来估算数据的了。暑期档前先声夺人会怎样,暑期档后等学生休假了会怎样。派拉蒙对变性金刚又会用怎样的策略,如果暑期档前和他撞车会怎样,暑期档后和他撞车会怎样。可能最后他们觉得变形金刚的目标群众都已经成年了,而哈利波特的目标群众还是学生偏多,在暑期档上映即使撞车问题也不大。
10. 博弈论~
楼主看英文不要注重一词一句的翻译
这里的governing dynamics可以翻译作"博弈论"的
首先要了解什么是博弈论, 这个著名的理论英文名字叫the Game Theory, 它是以模型模式构筑而成的, 用可以选择的步骤和行为作为输入条件, 用可能出现的结果作为输出结果. 通过构筑这个模型, 我们可以看出符合个体利益的选择在很多情况下并不是最佳选择. (具体的例子电影里已经给过了)
现在,this is governing dynamics说的就是"符合个体利益的选择在很多情况下并不是最佳选择"的这个情况, 当然, 我们可以把它硬性的理解为不是"博弈论"本身, 不过正是通过"博弈论", 我们才会了解到这个事实. 所以翻译为博弈论是无可厚非的.
最后, 博弈论三个字并不是一种理论, 而是一个经济学的模型, 这个模型帮助我们分析和解决很多实际问题而已.