导航:首页 > 电影题材 > 电影数据分析网站

电影数据分析网站

发布时间:2022-05-30 18:47:47

① 数据分析平台有哪些

作为一个新兴的市场领域,自助式BI的厂商众多,不同厂商推出的自助式BI产品,在易用性、复杂性和功能上各不相同。有些产品可能主要用于简单的仪表盘和可视化,而不能承担更复杂的任务,如自助数据准备、数据发现或交互式可视化探索。也有类似于Smartbi的全能型BI工具,支持从多数据源整合、ETL数据处理、数据建模、数据可视化、数据分析、数据填报、移动应用的全线功能。总之,选择适合自己的自助式BI,大幅降低商业智能的使用门槛,是企业从数据分析中获益的最快路径。像思迈特软件开发的Smartbi自助分析平台,它主要围绕业务人员提供企业级数分析工具和服务,以业务、问题为向导,让企业里的每一个人释放数据价值,让大数据应用和分析走进员工和管理者工作中,激发各层人员对数据的认知、挖掘和运用;通过推动全员自助分析、数据共享,提升企业数据资产价值,促进业务发展、风险控制和内部管理,进而推动数字化转型大数据可视化是进行各种大数据分析解决的最重要组成部分之一,通过思迈特软件Smartbi数据加工工作都得到了极大的简化,采用“类Excel数据透视表”的设计,多维分析不再需要建立模型,就能够组合维度、汇总计算、切片、钻取,洞察数据。不仅如此,任何字段都可直接作为输出字段或筛选条件,轻松实现对数据的查询与探索。

Smartbi产品功能设计全面,涵盖数据提取、数据管理、数据分析、数据共享四个环节,帮助客户从数据的角度描述业务现状,分析业务原因,预测业务趋势,推动业务变革。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

② 实时票房猫眼票房是什么

猫眼票房是由猫眼电影出品的一款统计电影票房的网站。主要为电影行业从业者提供及时、准确、专业的电影票房数据分析。其中的实时票房是在2016年推出的,其功能可以将票房数据更新频率从30分钟提升至秒级更新。

猫眼票房的相关数据统计功能包含了电影营销监控系统、影院顾客画像、秒级实时票房、影院实时票房、排片、上座率以及猫眼指数等多个内容。

③ 票房记录怎么看

电影的票房纪录可以在猫眼电影的官方网站进行查看。打开其官方网站以后点击查看更多票房纪录,此时即可看到对应的票房纪录信息了。具体的查看方法如下:

1、在电脑的网络上输入猫眼,找到其官方网站以后点击进入。

④ 猫眼票房怎么分析

只统计已开映场次和当天未开映场次票房。根据自己平台统计加上估算其他渠道售票估算而得。

猫眼电影是美团旗下的一家集媒体内容、在线购票、用户互动社交、电影衍生品销售等服务的一站式电影互联网平台。

2015年6月,猫眼电影覆盖影院超过4000家,这些影院的票房贡献占比超过90%。目前,猫眼占网络购票70%的市场份额,每三张电影票就有一张出自猫眼电影,是影迷下载量较多、使用率较高的电影应用软件。

重大事件:

2015年7月,猫眼电影独立为美团网旗下全资子公司猫眼文化传媒有限公司(简称猫眼公司)。

2015年7月13日,美团公布2015年上半年总体和各项业务数据。其中猫眼电影2015年上半年交易额达60亿元,超过2014年全年,占70%市场份额。

2015年7月9日,美团猫眼电影发布第二期大数据报告《大数据时代的电影消费洞察》。报告样本抽取于超5亿人次的猫眼电影消费数据,覆盖影片映前映后全部用户流程,并提供了最多的电影画像实例解析。

2015年7月6日,电影《栀子花开》在北京举行首映礼,猫眼电影作为《栀子花开》的联合发行和联合营销方,为影片举办了主题为“全明星首映观影毕业晚会”的粉丝专场观影活动。

⑤ 这是什么APP或者网站关于演员导演的票房

这出自猫眼专业版app.

猫眼专业版,由猫眼电影出品,为电影行业从业者提供及时、准确、专业的电影票房数据分析(秒级实时票房,排片,影院经营数据等),为影视从业者提供信息互通平台,提高影视作品制作效率(剧组成员招募,行业精英对接,找剧组、投资、导演、演员、摄影等)


主要功能:
电影营销监控系统:电影营销事件结合影片受众画像,有效量化营销效果,准确定位影片受众;

影院顾客画像:依托美团点评消费大数据库,产出行业最全的顾客与潜在顾客分析,帮助影院经理掌握顾 客是谁,顾客在哪,顾客喜欢啥;

秒级实时票房:国内秒级实时票房查询工具,每分每秒掌握电影市场实时动态;

找合作:海量剧组入驻,与剧组真实对接,双方直接沟通合作意向,提高影视剧制作效率,业内精英工作 档期无缝衔接;

排片&上座率:国内最超前的排片查询工具,提前一个月查询热门档期排片,随时掌握各影片排片场次及 占比,上座率及场均人次;

影院实时票房:更及时,更丰富,定位到影院!帮助影院经理知己知彼,更准确的制定经营决策;

猫眼指数+票房预测:洞察电影吸金潜力,提前把握影市脉搏。

⑥ 按电影的上映日期排行的网站

http://www.imdb.cn/

IMDB全称Internet Movie Database(互联网电影数据库),其前身是一个名叫“rec.arts.movies”的Usenet新闻组。当时一群热心影迷自发地组织起来,列出影片的演职员表,并为已故影人撰写小传(那时称作“死亡名单”)。

1990年10月17日,IMDB的奠基人Col Needham写了一系列Unix程序,使得所有信息成为可搜索数据,这项至关重要的功能使新闻组上的信息变得更有用、更有意义,直到现在,强大无比的交叉搜索功能还是IMDB的天字招牌。

1993年,IMDB.com正式启动,成为互联网上第一个完全以电影为内容的网站。之后6年,这个网站不断发展壮大,在美国各大校园网中出现镜像,提交电影信息的用户也越来越多(IMDB的写入权力是开放的)。

1995年,随着海量数据带来的信息拥堵、对员工人数的进一步要求,IMDB走上另一个十字路口。Col Needham辞掉了他的正式工作,用自己的信用卡买下了第一台服务器,并使IMDB公司化。

1998年,IMDB的信息量继续以几何级数增长,民间自愿贡献的服务器空间很快耗尽,所有义务工作的编辑人员也被无穷无尽的处理工作淹没,所幸的是,全球最大电子商务网站A鄄mazon.com的创始人杰夫·贝索斯买下了IMDB,使那些“白干活”的义工们终于拿到了薪水。

2001年3月,IMDB启动了帮助小演员成名的“宣传照”服务,2002年1月,专门针对业内人士的收费网站IMDbPro.com启动。

以下是IMDB中文网站:http://www.imdb.cn/
[注:本站IMDb.cn致力于收集全球电影中文详细资料,
本站域名前缀IMDb全称为Internet Movie Database,加上.cn意为因特网电影数据库中文网.
特此声明:本站与美国的imdb.com无任何关系,请不要将本站与别站相混合.]

IMDB是目前全球互联网中最大的一个电影资料库,里面包括了几乎所有的电影,以及1982年以后的电视剧集。IMDB的资料中包括了影片的众多信息,演员,片长,内容介绍,分级,评论等,我们用的最多的也就是IMDB的得分。而IMDB的得分又是如何来的呢?它的可靠性又有多少呢?让我们通过《魔戒1:护戒使者》来做具体分析吧,先看这张图——

这张图就是魔戒1的所有评分者的分数的一个条状统计图。

从中我们可以看到各个分数段的大致比例,比如这儿就可以发现,超过一半的人是打满分的。

图下面有两个分值,一个是算术平均值(arithmetic mean),一个是中值(median)。算术平均值大概就是平均数,中值是统计学中的中间数值,该值和比它大及比它小的数值是等差的。而最后我们查到的分数却既不是算术平均值,也不是中值。

IMDB的分数的计算方法应该不是就做一下平均就ok了,在它的网页上也提到了它的计算方法是保密的。不过imdb top 250用的是贝叶斯统计的算法得出的加权分(Weighted Rank-WR),公式如下:

weighted rank (WR) = (v ÷ (v+m)) × R + (m ÷ (v+m)) × C

其中:

R = average for the movie (mean) = (Rating) (是用普通的方法计算出的骄�郑?br>v = number of votes for the movie = (votes) (投票人数,需要注意的是,只有经常投票者才会被计算在内,这个下面详细解释)

m = minimum votes required to be listed in the top 250 (currently 1250) (进入imdb top 250需要的最小票数,只有三两个人投票的电影就算得满分也没用的)

C = the mean vote across the whole report (currently 6.9) (目前所有电影的平均得分)

另外重点来了,根据这个注释:

note: for this top 250, only votes from regular voters are considered.

只有'regular voters'的投票才会被计算在IMDB top 250之内,这就是IMDB防御因为某种电影的fans拉票而影响top 250结果,把top 250尽量限制在资深影迷投票范围内的主要方法。regular voter的标准不详,估计至少是“投票电影超过xxx部以上”这样的水平,搞不好还会加上投票的时间分布,为支持自己的心爱电影一天内给N百部电影投票估计也不行。

因此,细心的人可以注意到,列入IMDB top 250的电影,其主页面上的分数与250列表中的分数是不同的。以魔戒1为例,它在自己的页面 http://www.imdb.com/title/tt0120737/ 中的分数是8.8,而列表中是8.7。一般250表中的得分都会低于自己页面中的得分,越是娱乐片差距越大。这大概是因为regular voter对于电影的要求通常较高的关系。)

而IMDB的过人之处不仅仅在于这儿,它除了给出分数,还给了一个更详细的投票人的列表

这个chart(图表)根据年龄、性别、国别等不同的情况,列出了不同的分数chart。而且你点击每个选项,上面(就是图一)都会出现一个不同的chart。这个其实是比较有用的。比如你在要选择动画片的时候,就应该点选一下小于18岁,或者30-44岁这个选项看看他们的评分,因为他们才是这部电影的最大观众群,其他人的分数都是仅供参考的。

碟报员或者我们在选择影片的时候,可以不仅仅看个总得分,多花一点时间,看看影片各个年龄段的得分会更有帮助的。有些影片我们觉得不好看,但是分数很高,你也可以参照一下,“us users”和“non-us users”这部分的数据,如果美国投票用户远远大于海外用户,那说明此片的确是有相当重的美国文化底蕴的,不觉得好看也是正常。相反的,如果我们觉得不错,但是IMDB的分数很低,这也许是老美的评分人数多,打的分低,就把总分给拉下来了。

⑦ 男演员票房排名怎么查 就是网上有图统计的男演员票房,谁第一有多少多少之类的,他们在什么网站查的啊

猫眼票房分析
提供准确的每日电影实时票房、排片、上座率查询,为电影从业者提供及时、专业的数据分析服务

⑧ 猫眼实时票房排行怎么看

可以打开猫眼实时票房页面进行查看。进入到该页面以后,点击电影票房。此时即可在该界面中看到对应电影实时的票房变动数据了。

猫眼专业版是由猫眼电影开发,为电影行业从业者提供及时、准确、专业的电影票房数据分析(秒级实时票房、排片和影院经营数据等),为影视从业者提供信息互通平台,提高影视作品制作效率(剧组成员招募,行业精英对接,找剧组、投资、导演、演员、摄影等)。

主要功能

电影营销监控系统:电影营销事件结合影片受众画像,有效量化营销效果,准确定位影片受众;

秒级实时票房:国内秒级实时票房查询工具,每分每秒掌握电影市场实时动态;

找合作:海量剧组入驻,与剧组真实对接,双方直接沟通合作意向,提高影视剧制作效率,业内精英工作档期无缝衔接;

排片&上座率:国内最超前的排片查询工具,提前一个月查询热门档期排片,随时掌握各影片排片场次及占比,上座率及场均人次;

影院实时票房:更及时,更丰富,定位到影院!帮助影院经理知己知彼,更准确的制定经营决策。

⑨ 数据挖掘 | 数据理解和预处理

数据挖掘 | 数据理解和预处理
小编遇到过很多人(咳咳,请不要对号入座),拿到数据后不管三七二十一,先丢到模型中去跑,管它具体什么样呢,反正“大数据”嘛,总能整出点东西来。
但就像上次说过的,“大数据”很有可能带来“大错误”!所以在数据挖掘工作开始前,认真的理解数据、检查数据,对数据进行预处理是至关重要的。
很多人说,数据准备工作真是个“体力活”,耗时耗力不说,还异常的枯燥无味。这点小编承认,建模之前的数据处理确实是平淡的,它往往不需要多高的智商,多牛的编程技巧,多么高大上的统计模型。
但是,它却能时时触发你的兴奋点,因为它需要足够的耐心和细心,稍不留神就前功尽弃。
在这次的内容里,小编首先会从“数据理解”、“变量类型”和“质量检查”三个方面进行阐述,然后会以一个自己做过的实际数据为例进行展示。
一、数据理解
拿到数据后要做的第一步就是理解数据。
什么是理解数据呢?不是简单看下有多少Excel表,有多少行,多少列,而是要结合自己的分析目标,带着具体的业务需求去看。
首先,我们需要明确数据记录的详细程度,比方说某个网站的访问量数据是以每小时为单位还是每天为单位;一份销售数据记录的是每家门店的销售额还是每个地区的总销售额。
其次,我们需要确定研究群体。研究群体的确定一定和业务目标是密切相关的。
比方说,如果我们想研究用户对产品的满意度与哪些因素有关,就应该把购买该产品的所有客户作为研究群体;如果我们想研究用户的购买行为受哪些因素影响,就应该同时考察购买人群和非购买人群,在两类人群的对比中寻找关键因素。
研究群体的确定有时也和数据的详细程度有关。
比如我们想研究“观众影评”对“电影票房”的影响,我们既可以把“每部电影”看成一个个体,研究“影评总数”对“电影总票房”的影响,也可以把“每部电影每天的票房”看成一个个体,研究“每天的影评数”对“每天的电影票房”的影响。
具体选择哪一种取决于我们手上有什么样的数据,如果只有总票房和总影评数的数据,那我们只能选择第一种;如果有更详细的数据,那就可以考虑第二种方案。
需要注意的是,这两种方案还会影响我们对于模型的选择。
例如,如果研究“每天的影评数”对“每天电影票房”的影响,那每部电影又被细分为很多天,同一部电影不同时间的票房会有较高的相似性,这就形成了一种层次结构,可以考虑使用层次模型(hierarchical model)进行分析。
最后,当我们确定了研究目标和研究群体后,我们需要逐一理解每个变量的含义。有些变量和业务目标明显无关,可以直接从研究中剔除。
有些变量虽然有意义,但是在全部样本上取值都一样,这样的变量就是冗余变量,也需要从研究中剔除。
还有一些变量具有重复的含义,如“省份名称”和“省份简称”,这时只需要保留一个就可以了。
二、变量类型
所有变量按其测量尺度可以分成两大类,一类是“分类变量”,一类是“数值变量”。不同类型的变量在处理方法和后期的模型选择上会有显著差别。
【分类变量】
分类变量又称属性变量或离散变量,它的取值往往用有限的几个类别名称就可以表示了,例如“性别”,“教育程度”,“收入水平”,“星期几”等。细分的话,分类变量又可分为两类,一类是“名义变量”,即各个类别间没有顺序和程度的差别,就像“手机系统”中ios和安卓并没有明显的好坏差别,“电影类型”中“动作片”和“科幻片”也都是一样的,说不上哪个更好或更差。
另外一类是定序变量,即不同类别之间存在有意义的排序,如“空气污染程度”可以用“差、良、优”来表示、“教育程度”可以用“小学、初中、高中、大学”来表示。
当研究的因变量是分类变量时,往往对应特定的分析方法,我们在后面的章节会陆续讲到,这里暂且不谈。
当研究中的自变量是分类变量时,也会限制模型选择的范围。有些数据挖掘模型可以直接处理分类自变量,如决策树模型;但很多数据挖掘模型不能直接处理分类自变量,如线性回归、神经网络等,因此需要将分类变量转换成数值变量。
对于定序自变量,最常用的转换方法就是按照类别程度将其直接转换成数值自变量,例如将空气污染程度 “差、良、优”转换为“1,2,3”。
对于名义自变量,最常用的转换方法就是构造0-1型哑变量。例如,对于“性别”,可以定义“1=男,0=女”。
当某个名义变量有K个类别取值时,则需要构造K-1个哑变量。例如教育程度“小学,初中,高中,大学及以上”,可以构造三个哑变量分别为:x1:1=小学,0=其它;x2:1=初中,0=其它;x3:1=高中,0=其它。当x1,x2,x3三个哑变量取值都为0时,则对应着“大学及以上”。
需要注意的是,有时候名义变量的取值太多,会生成太多的哑变量,这很容易造成模型的过度拟合。
这时可以考虑只把观测比较多的几个类别单独拿出来,而把剩下所有的类别都归为“其它”。
例如,中国一共包含56个民族,如果每个民族都生成一个哑变量就会有55个,这时我们可以只考虑设置“是否为汉族”这一个0-1哑变量。
【数值变量】
我们再来看看数值变量。数值变量就是用数值描述,并且可以直接进行代数运算的变量,如“销售收入”、“固定资本”、“评论总数”、“访问量”、“学生成绩”等等都是数值变量。
需要注意的是,用数值表示的变量不一定就是数值型变量,只有在代数运算下有意义的变量才是数值型变量。
例如财务报表的年份,上市时间等,虽然也是用数值表示的,但我们通常不将它们按照数值型变量来处理。
上面我们讲到,分类变量通常要转换成数值型变量,其实有些时候,数值型变量也需要转换成分类变量,这就用到了“数据分箱”的方法。
为什么要进行数据分箱呢?通常有以下几个原因:
1. 数据的测量可能存在一定误差,没有那么准确,因此按照取值范围转换成不同类别是一个有效的平滑方法;
2.有些算法,如决策树模型,虽然可以处理数值型变量,但是当该变量有大量不重复的取值时,使用大于、小于、等于这些运算符时会考虑很多的情况,因此效率会很低,数据分箱的方法能很好的提高算法效率;
3.有些模型算法只能处理分类型自变量(如关联规则),因此也需要将数值变量进行分箱处理。
数据分箱后,可以使用每个分箱内的均值、中位数、临界值等作为这个类别的代表值,也可以直接将不同取值范围定义成不同的类别,如:将污染程度划分后定义为“低、中、高”等。
那如何进行数据分箱呢?常用的数据分箱的方法有:等宽分箱(将变量的取值范围划分成等宽的几个区间)、等频分箱(按照变量取值的分位数进行划分)、基于k均值聚类的分箱(将所有数据进行k均值聚类,所得的不同类别即为不同的分箱),还有一些有监督分箱方法,如:使分箱后的结果达到最小熵或最小描述长度等。这里不详细介绍了,有兴趣的童鞋可以自行网络。
三、质量检查
对数据中的各个变量有了初步了解后,我们还需要对数据进行严格的质量检查,如果数据质量不过关,还需要进行数据的清洗或修补工作。
一般来说,质量检查包括检查每个变量的缺失程度以及取值范围的合理性。
【缺失检查】
原始数据中经常会存在各种各样的缺失现象。
有些指标的缺失是合理的,例如顾客只有使用过某个产品才能对这个产品的满意度进行评价,一笔贷款的抵押物中只有存在房地产,才会记录相应的房地产的价值情况等。
像这种允许缺失的变量是最难搞的,因为我们很难判断它的缺失是合理的,还是由于漏报造成的。
但无论哪种情况,如果变量的缺失率过高,都会影响数据的整体质量,因为数据所反映的信息实在太少,很难从中挖掘到有用的东西。
对于不允许缺失的变量来说,如果存在缺失情况,就必须进行相应的处理。如果一个变量的缺失程度非常大,比方说达到了70%,那就考虑直接踢掉吧,估计没救了。
如果缺失比例还可以接受的话,可以尝试用缺失值插补的方法进行补救。
插补的目的是使插补值能最大可能的接近其真实的取值,所以如果可以从其他途径得到变量的真实值,那一定优先选择这种方法。
比如某个公司的财务信息中缺失了“最终控制人类型”和“是否国家控股”这两个取值,这些可以通过网上的公开信息得到真实值;再比如缺失了“净利润率”这个指标的取值,但是却有“净利润”和“总收入”的取值,那就可以通过变量间的关系得到相应的缺失值,即净利润率=净利润/总收入。
当然,更多的时候,我们无法得到缺失值的真实信息,这时就只能借用已有的数据来进行插补了。
对数值变量来说,可以用已观测值的均值、中位数来插补缺失值;对分类型变量来说,可以用已观测数据中出现比例最高的类别取值来进行插补。
这些方法操作起来非常简单,但它们都是对所有缺失值赋予了相同的取值,所以当缺失比例较大时,可能会扭曲被插补变量与其余变量的关系。
更复杂一点的,我们可以选择模型插补方法,即针对被插补变量和其它自变量之间的关系建立统计模型(如回归、决策树等),将模型预测值作为插补值。
如何处理缺失值是一个很大的研究课题,我们这里只是介绍了最简单可行的方法,有兴趣的读者可以参阅Little和Rubin 2002年的专著“Statistical Analysis with Missing Data”。
【变量取值合理性检查】
除了缺失外,我们还要考察每个变量的取值合理性。每个变量都会有自己的取值范围,比如“用户访问量”、“下载次数”一定是非负的,“投资收益率”一定在0~1之间。通过判断变量的取值是否超出它应有的取值范围,可以简单的对异常值进行甄别。
除了根据变量的取值范围来检查变量质量外,还可以根据变量之间的相互关系进行判断。例如一家公司的“净利润率”不应该大于“总利润率”等。
只有通过了各个方面检测的数据才是一份高质量的数据,才有可能带来有价值的模型结果。
四、实例分析——电影票房分析
最后,我们给出一个实例分析。在这个例子中,我们的目标是研究电影哪些方面的特征对电影票房有影响。
我们有两方面的数据,一是描述电影特征的数据,二是描述电影票房的数据。
由于我们关注的是北美的票房市场,所以描述电影特征的数据可以从IMDB网站得到,它是一个关于演员、电影、电视节目、电视明星和电影制作的在线数据库,里面可以找到每部上映电影的众多信息;电影每天的票房数据可以从美国权威的票房网站Box Office Mojo得到,上面记录了每部电影上映期间内每天的票房数据。
我们将从IMDB得到的数据放到“movieinfor.csv”文件中,将从Box Office Mojo中得到的数据放到“boxoffice.csv”文件中。
这里,我们以2012年北美票房市场最高的前100部电影为例进行讲解。下表给出了这两个数据集中包含的所有变量以及相应的解释。
在这两个数据中,movieinfor.csv数据的记录是精确到每部电影的,而boxoffice.csv数据精确到了每部电影中每天的票房数据,是精确到天的。上表中给出的变量中,除了电影名称和ID外,“电影类型”“MPAA评级”(美国电影协会对电影的评级)和“星期几”是分类型变量;“放映时长”、“制作预算”、“电影每天的票房”和“每天放映的影院数”是数值型变量。两份数据都不存在缺失值。
我们首先对两个数据集分别进行变量预处理,然后再根据电影ID将两个数据整合到一起。下面给出了每个变量的处理方法:
【电影类型】
电影类型是一个分类变量。在这个变量中我们发现每部电影都不止一个类型,例如“The Dark Knight Rises”这部电影就有“Action”、“Crime”和“Thriller”三个类型,并且它们以“|”为分隔符写在了一起。
同时,不同电影之间可能有相同的类型,也可能有不同的类型,例如票房排名第二的电影“Skyfall”,它的类型是“Action |Adventure |Thriller”。
因此,我们首先需要做的是把每部电影所属的类型逐一取出来,然后将所有出现过的类型分别形成一个0-1哑变量,如果这部电影在某个类型上出现了,则相应变量的取值就是1,否则是0.
通过上面一步,我们知道这个数据集中出现过的所有电影类型一共有11个。
那是不是按照之前所讲的,应该把它转换为10个哑变量呢?这里需要注意的是,所有的电影类型之间并不是互斥的(即有了action,就不能有其他的类型),所以我们无需因为共线性的原因去掉其中一个。
也就是说,如果把每一个电影类型单独作为一个独立的变量,可以衍生出11个新的0-1变量,这完全没有问题。但11个变量未免有点过多,所以我们根据不同电影类型的频数分布情况,只把出现次数明显较多的类型单独拿出来,最终生成了6个0-1型变量,分别为Adventure,Fantasy,Comedy,Action,Animation,Others。
【MPAA评级】
对于这个分类型变量,我们首先可以看一下数据中它所包含的全部取值,发现一共有“PG”,“PG-13”和“R”三个。
和上面的电影类型(Genre)不同,对于一部电影而言,它只能有一个MPAA取值。因此,在MPAA变量中,我们需要选择一个作为基准,将另外两个构造成哑变量。
例如,我们以“PG”为基准,构造的两个哑变量分别为PG13和R,如果这两个哑变量的取值同时为0,那就相当于电影的MPAA评级是PG。
【放映当天是星期几】
这个变量同MPAA评级一样,每部电影只能有一个取值。
如果它在星期一到星期日上都有取值的话,我们可以衍生出6个0-1型哑变量。
因为这里我们更关注周末和非周末对电影票房的影响,而并不关注具体是哪一天,所以我们将其进一步概括成一个变量,即“是否是周末”。
【放映时长和制作预算】
放映时长和制作预算这两个变量都是取值大于0的数值型变量,我们可以分别检查它们的取值是否在合理的范围内,然后直接保留它们的数值信息。
同时,对“制作预算”而言,假设我们这里关心的不是制作预算的具体数值,而是“小成本电影”和“大成本电影”的票房差异,那我们就可以将这个数值型变量进行分箱处理,转换为一个0-1型的分类变量,即 “是否为小成本电影”。
在决定按照什么标准来划分是否为小成本电影时,我们根据之前文献里的研究结果,将制作预算在100 million以下的电影看成是小成本电影。
上述所有变量的处理过程都可以使用R中最基本的语句(table,rep,which等)完成,由于篇幅限制,小编这里就不列出详细的code了,大家感兴趣的话,可以阅读狗熊会的“R语千寻”系列(戳这里),相信会在R语言的学习上受到更多启发。
最后,我们将所有新生成的变量按照电影ID整合到一起,就大功告成啦。
五、总结
最后总结一下,小编在这次内容中向大家介绍了拿到数据后的数据理解和预处理工作,内容虽然不难,但同样需要我们认真对待。就好像生活一样,只有踏踏实实走好前面的路,才有可能迎接后面的高潮迭起!

⑩ 大数据分析平台哪家好

以下为大家介绍几个代表性数据分析平台:
1、 Cloudera
Cloudera提供一个可扩展、灵活、集成的平台,可用来方便的管理您的企业中快速增长的多种多样的数据,从而部署和管理Hadoop和相关项目、操作和分析您的数据以及保护数据的安全。Cloudera Manager是一个复杂的应用程序,用于部署、管理、监控CDH部署并诊断问题,Cloudera Manager提供Admin Console,这是一种基于Web的用户界面,是您的企业数据管理简单而直接,它还包括Cloudera Manager API,可用来获取集群运行状况信息和度量以及配置Cloudera Manager。
2、 星环Transwarp
基于hadoop生态系统的大数据平台公司,国内唯一入选过Gartner魔力象限的大数据平台公司,对hadoop不稳定的部分进行了优化,功能上进行了细化,为企业提供hadoop大数据引擎及数据库工具。
3、 阿里数加
阿里云发布的一站式大数据平台,覆盖了企业数仓、商业智能、机器学习、数据可视化等领域,可以提供数据采集、数据深度融合、计算和挖掘服务,将计算的几个通过可视化工具进行个性化的数据分析和展现,图形展示和客户感知良好,但是需要捆绑阿里云才能使用,部分体验功能一般,需要有一定的知识基础。maxcompute(原名ODPS)是数加底层的计算引擎,有两个维度可以看这个计算引擎的性能,一个是6小时处理100PB的数据,相当于1亿部高清电影,另外一个是单集群规模过万台,并支持多集群联合计算。
4、 华为FusionInsight
基于Apache进行功能增强的企业级大数据存储、查询和分析的统一平台。完全开放的大数据平台,可运行在开放的x86架构服务器上,它以海量数据处理引擎和实时数据处理引擎为核心,针对金融、运营商等数据密集型行业的运行维护、应用开发等需求,打造了敏捷、智慧、可信的平台软件。
5、网易猛犸
网易猛犸大数据平台使一站式的大数据应用开发和数据管理平台,包括大数据开发套件和hadoop发行版两部分。大数据开发套件主要包含数据开发、任务运维、自助分析、数据管理、项目管理及多租户管理等。大数据开发套件将数据开发、数据分析、数据ETL等数据科学工作通过工作流的方式有效地串联起来,提高了数据开发工程师和数据分析工程师的工作效率。Hadoop发行版涵盖了网易大数据所有底层平台组件,包括自研组件、基于开源改造的组件。丰富而全面的组件,提供完善的平台能力,使其能轻易地构建不同领域的解决方案,满足不同类型的业务需求。
6.知于大数据分析平台
知于平台的定位与当今流行的平台定位不一样,它针对的主要是中小型企业,为中小型企业提供大数据解决方案。现阶段,平台主打的产品是舆情系统、文章传播分析与网站排名监测,每个服务的价格单次在50元左右,性价比极高。

阅读全文

与电影数据分析网站相关的资料

热点内容
外出2电影神马 浏览:750
一部跟流浪地球差不多的电影 浏览:323
最新剧情家庭电影在线观看 浏览:47
4k在线小电影 浏览:525
战争插曲老电影 浏览:29
少林寺全集电影播放高清 浏览:900
电影卡在手机上可以绑定吗 浏览:446
情人这个电影在哪里 浏览:82
从日本带小电影回国 浏览:561
搜索达达兔手机免费看电影 浏览:458
播放的电影有广告怎么去除 浏览:54
谁有安全的小电影网站 浏览:92
电影武侠的票房 浏览:592
ios迅雷总失效如何导出已下载电影 浏览:934
电影短视频剪辑怎么弄 浏览:157
90以上的动画电影票图片 浏览:579
金沟情仇电影完整版 浏览:411
恋恋笔记本电影完整版 浏览:392
美团怎么一元看电影 浏览:10
2019年第22届上海国际电影节 浏览:226