导航:首页 > 电影题材 > 电影评论分析Python背景

电影评论分析Python背景

发布时间:2023-02-17 02:33:08

『壹』 利用 Python 分析 MovieLens 1M 数据集

MovieLens数据集是一个关于电影评分的数据集,里面包含了从IMDB, The Movie DataBase上面得到的用户对电影的评分信息,详细请看下面的介绍。

文件里面的内容是帮助你如何通过网站id在对应网站上找到对应的电影链接的。

movieId, imdbId, tmdbId

表示这部电影在movielens上的id,可以通过链接 https://movielens.org/movies/(movieId) 来得到。

表示这部电影在imdb上的id,可以通过链接 http://www.imdb.com/title/(imdbId)/
来得到。

movieId, title, genres

文件里包含了一部电影的id和标题,以及该电影的类别

movieId, title, genres

每部电影的id

电影的标题

电影的类别(详细分类见readme.txt)

文件里面的内容包含了每一个用户对于每一部电影的评分。

数据排序的顺序按照userId,movieId排列的。

文件里面的内容包含了每一个用户对于每一个电影的分类

数据排序的顺序按照userId,movieId排列的。

=======

该数据集(ml-latest-small)描述了电影推荐服务[MovieLens]( http://movielens.org )的5星评级和自由文本标记活动。它包含9742部电影的100836个评级和3683个标签应用程序。这些数据由610位用户在1996年3月29日到2018年9月24日之间创建。该数据集于2018年9月26日生成。

随机选择用户以包含在内。所有选定的用户评分至少20部电影。不包括人口统计信息。每个用户都由一个id表示,并且不提供其他信息。

数据包含在 links.csv , movies.csv , ratings.csv 和 tags.csv 文件中。有关所有这些文件的内容和用法的更多详细信息如下。

这是一个发展的数据集。因此,它可能会随着时间的推移而发生变化,并不是共享研究结果的适当数据集。

========

要确认在出版物中使用数据集,请引用以下文件:

========================

数据集文件以[逗号分隔值]文件写入,并带有单个标题行。包含逗号( , )的列使用双引号(```)进行转义。这些文件编码为UTF-8。如果电影标题或标签值中的重音字符(例如Misérables,Les(1995))显示不正确,确保读取数据的任何程序(如文本编辑器,终端或脚本)都配置为UTF-8。

MovieLens用户随机选择包含。他们的ID已经匿名化了。用户ID在 ratings.csv 和 tags.csv 之间是一致的(即,相同的id指的是两个文件中的同一用户)。

数据集中仅包含至少具有一个评级或标记的电影。这些电影ID与MovieLens网站上使用的电影ID一致(例如,id 1 对应于URL https://movielens.org/movies/1 )。电影ID在 ratings.csv , tags.csv , movies.csv 和 links.csv 之间是一致的.

通过[pandas.read_csv]将各表转化为pandas 的DataFrame对象

其中用到的参数为分隔符sep、头文件header、列名定义names、解析器引擎engine
这里和书上相比多用了engine参数,engine参数有C和Python,C引擎速度更快,而Python引擎目前功能更完整。

可用pandas.merge 将所有数据都合并到一个表中。merge有四种连接方式(默认为inner),分别为

通过索引器查看第一行数据,使用基于标签的索引.loc或基于位置的索引.iloc

可通过数据透视表( pivot_table )实现

该操作产生了另一个DataFrame,输出内容为rating列的数据,行标index为电影名称,列标为性别,aggfunc参数为函数或函数列表(默认为numpy.mean),其中“columns”提供了一种额外的方法来分割数据。

by参数的作用是针对特定的列进行排序(不能对行使用),ascending的作用是确定排序方式,默认为升序

增加一列存放平均得分之差,并对其排序,得到分歧最大且女性观众更喜欢的电影

按照电影标题将数据集分为不同的groups,并且用size( )函数得到每部电影的个数(即每部电影被评论的次数),按照从大到小排序,取最大的前20部电影列出如下

按照电影名称分组,用agg函数通过一个字典{‘rating’: [np.size, np.mean]}来按照key即rating这一列聚合,查看每一部电影被评论过的次数和被打的平均分。取出至少被评论过100次的电影按照平均评分从大到小排序,取最大的10部电影。

『贰』 豆瓣电影数据分析的背景与意义

豆瓣电影数据分析的背景与意义是电影发展的衡量标准。根据查询相关资料信息显示:豆瓣已经成为国内电影爱好者、影评人士的聚集地,豆瓣评分已经成为国内一个评价电影的重要指标,豆瓣上积攒了大量电影数据为电影行业分析提供了重要资源,通过豆瓣电影来衡量国内外的电影的发展情况。

『叁』 如何用Python进行大数据挖掘和分析

如何用Python进行大数据挖掘和分析?快速入门路径图
大数据无处不在。在时下这个年代,不管你喜欢与否,在运营一个成功的商业的过程中都有可能会遇到它。
什么是 大数据 ?
大数据就像它看起来那样——有大量的数据。单独而言,你能从单一的数据获取的洞见穷其有限。但是结合复杂数学模型以及强大计算能力的TB级数据,却能创造出人类无法制造的洞见。大数据分析提供给商业的价值是无形的,并且每天都在超越人类的能力。
大数据分析的第一步就是要收集数据本身,也就是众所周知的“数据挖掘”。大部分的企业处理着GB级的数据,这些数据有用户数据、产品数据和地理位置数据。今天,我将会带着大家一起探索如何用 Python 进行大数据挖掘和分析?
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼等。还有,Python是开源的,并且有很多用于数据科学的类库。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
数据分析流程
一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:
数据获取:公开数据、Python爬虫
外部数据的获取方式主要有以下两种。
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显著性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
总结
其实做数据挖掘不是梦,5步就能让你成为一个Python爬虫高手!

『肆』 电影评论中是否存在客观性

当然存在客观性。如果您正在查看“寄生虫”,则可以客观地声明影片名称是“寄生虫”。

但是,当评论家讨论他们认为创作者成功实现其意图的程度时,客观性就结束了。最后,完成某件事的成败完全取决于观点。根据定义,观点不能是客观的。

我敢肯定,有些人会认为这是一种牺牲,但最终是真的。不管电影多么出色,总会有一些人的见解与观点背道而驰。

只要他们能以丰富的论据来支持这种思想并理解电影的客观元素,那么说人的观点是“错误的”绝对是荒谬的。

最后,客观性和主观性都占有重要地位。客观性对于理解电影至关重要,而主体性正是我们喜欢它的原因。

『伍』 Python豆瓣电影《肖申克的救赎》评论爬取

先看效果图:

地址:( https://movie.douban.com/subject/1292052/comments?sort=time&status=P)

爬取前1w条评论

存储成txt文档

数据预处理

中文分词

统计top10的高频词

可视化展示高频词

根据词频生成词云

审核评论

================================================================

配置准备

中文分词需要jieba

词云绘制需要wordcloud

可视化展示中需要的中文字体

网上公开资源中找一个中文停用词表

根据分词结果自己制作新增词表

准备一张词云背景图(附加项,不做要求)

paddlehub配置

#安装jieba分词和词云

pip install jieba

pip install wordcloud

#安装paddle

pip install --upgrade PaddlePaddle

#安装模型

#hub install porn_detection_lstm==1.1.0

pip install --upgrade paddlehub

pip install  numpy

#安装Beautifulsoup

pip install BeautifulSoup4

Github地址: https://github.com/mikite/python_sp_shawshank

有可能遇到的问题:

1.UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe8 in position 1: invalid continuation byte

解决方法:

1.不使用urlLib换做requests

2.去掉请求头中的 'Accept-Encoding': 'gzip, deflate, br'

3.返回值reponse 转字符串指定编码utf-8

# 'Accept-Encoding': 'gzip, deflate, br',

2.关于cookie

解决方法:

1.去豆瓣请求头中复制cookie设置到请求头中

'Cookie': 'bid=WD6_t6hVqgM'

3.请求返回418的问题

解决方案模拟设置请求头,设置user-agent

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36',

4.使用beautifulsoup获取不到评论

解决方法:

第一步:指定解析参数为'lxml'

soupComment = BeautifulSoup(html, 'lxml')

第二步:

findAll方法指定css文件的class名

print('网页内容:', soupComment.prettify())

comments = soupComment.findAll(class_='short')

点击获取源码

『陆』 电影推荐系统是用java写还是paython写好一点

我觉得用java好一些。
java是一门面向对象的编程语言。java语言具有功能强大和简单易用两个特征,具有简单性、面向对象、分布式等特点,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等。
Python目前的应用领域比较广泛,目前Python的主要方向分为后端开发、数据分析、网络爬虫、机器学习等。

『柒』 豆瓣电影数据分析

这篇报告是我转行数据分析后的第一篇报告,当时学完了Python,SQL,BI以为再做几个项目就能找工作了,事实上……分析思维、业务,这两者远比工具重要的多。一个多月后回过头来看,这篇报告虽然写得有模有样,但和数据分析报告还是有挺大差别的,主要原因在于:a.只是针对豆瓣电影数据分析太过宽泛了,具体关键指标到底是哪些呢?;b.没有一个确切有效的分析模型/框架,会有种东一块西一块的拼接感。
即便有着这些缺点,我还是想把它挂上来,主要是因为:1.当做Pandas与爬虫(Selenium+Request)练手,总得留下些证明;2.以豆瓣电影进行分析确实很难找到一条业务逻辑线支撑,总体上还是描述统计为主;3.比起网上能搜到的其他豆瓣电影数据分析,它更为详细,可视化效果也不错;

本篇报告旨在针对豆瓣电影1990-2020的电影数据进行分析,首先通过编写Python网络爬虫爬取了51375条电影数据,采集对象包括:电影名称、年份、导演、演员、类型、出品国家、语言、时长、评分、评论数、不同评价占比、网址。经过去重、清洗,最后得到29033条有效电影数据。根据电影评分、时长、地区、类型进行分析,描述了评分与时长、类型的关系,并统计了各个地区电影数量与评分。之后,针对演员、导演对数据进行聚合,给出产量与评分最高的名单。在分析过程中,还发现电影数量今年逐步增加,但评分下降,主要原因是中国地区今年低质量影视作品的增加。

另外,本篇报告还爬取了电影票房网( http://58921.com/ )1995-2020年度国内上映的影片票房,共采集4071条数据,其中3484条有效。进一步,本文分析了国内院线电影票房年度变化趋势,票房与评分、评价人数、时长、地区的关系,票房与电影类型的关联,并给出了票房最高的导演、演员与电影排名。

清洗、去重后,可以看到29033条数据长度、评分、评论数具有以下特点:

结合图1(a)(b)看,可以看到电影数据时长主要集中在90-120分钟之间,向两极呈现阶梯状递减,将数据按照短(60-90分钟),中(90-120分钟),长(120-150分钟),特长(>150分钟)划分,各部分占比为21.06%, 64.15%, 11.95%, 2.85%。

结合图2(a)看,可以看到我们采集到的电影数据评分主要集中在6.0-8.0之间,向两极呈现阶梯状递减,在此按照评分划分区间:2.0-4.0为口碑极差,4.0-6.0为口碑较差,6.0-7.0为口碑尚可,7.0-8.0为口碑较好,8.0-10.0为口碑极佳。

这5种电影数据的占比分别为:5.78%, 23.09%, 30.56%, 29.22%, 11.34%

再将评分数据细化到每年进行观察,可以发现,30年内电影数量与年度电影均分呈反相关,年度均分整体呈现下降趋势,2016年电影均分最低,电影数量最多。

进一步做出每个年份下不同评级等级的电影数据占比,可以发现,近年来,评分在[2.0,6.0)的电影数据占比有着明显提升,评分在[6.0,7.0)的数据占比不变,评分在[7.0,10.0)的数据占比减少,可能原因有:

对照图5,可以发现,评分与时长、评论人数的分布大致呈现漏斗状,高分电影位于漏斗上部,低分电影位于漏斗下部。这意味着,如果一部电影的评论人数很多(特别是超过30w人观影),时长较长(大于120min),那么它大概率是一部好电影。

根据各个国家的电影数量作图,可以得到图6,列出电影数量前十的国家可得表格2,发现美国在电影数量上占第一,达到8490部,中国其次,达6222部。此外,法国,英国,日本的电影数量也超过1000,其余各国电影数量相对较少。这可以说明美国电影有着较大的流量输入,在中国产生了较大的影响。

进一步分析各国电影的质量,依据评分绘制评分箱线图可得图7,在电影数量排名前20的国家中:

接着我们可以探索,哪个国家的电影对豆瓣评分随年份下降的贡献最大,考虑到电影数量对应着评分的权重。根据上述各国的电影评分表现,我们可以猜测电影数量较多的国家可能对年度均分的下降有较大影响。于是,我们再计算出这些国家的年度电影均分,并与整体均分进行比较分析。

再作出中国大陆,中国台湾,中国香港的均分箱线图图9(a),可以看到,大陆电影均分低于港台电影,且存在大量低分电影拉低了箱体的位置。

分析相关性可得,大陆、香港、台湾电影年度均分与全部评分关联度分别为R=0.979,0.919,0.822,说明滤去台湾和香港电影,大陆电影年度均分的变化趋势与全部评分变化更接近。图9(b)可以进一步反映这一点。

可以看到,大部分类型集中在X×Y=[10000,30000]×[6.00,7.50]的区间范围内,剧情、喜剧、爱情、犯罪、动作类电影数量上较多,说明这些题材的电影是近三十年比较热门的题材,其中剧情类电影占比最多,音乐、传记类电影平均得分更高,但在数量上较少,动作、惊悚类电影评论人数虽多,但评价普遍偏低。

除此之外,还有两块区域值得关注:

根据类型对电影数据进行聚合,整理得到各类型电影评分的时间序列,计算它们与整体均分时间序列的相关性,可得表格4与图11,可以看到剧情,喜剧,悬疑这三种类型片与总分趋势变化相关性最强,同时剧情、喜剧类电影在电影数量上也最多,因此可以认为这两类电影对于下跌趋势影响最大,但其余类别电影的相关性也达到了0.9以上,说明几种热门的电影得分的变化趋势与总体均分趋势一致。

前面已经得知,中美两国电影占比最高,且对于均分时间序列的影响最大。在此,进一步对两国电影进行类型分析,选取几种主要的类型(数量上较多,且相关性较高)进行分析,分别是剧情,喜剧,爱情,惊悚,动作,悬疑类电影,绘制近年来几类电影的数量变化柱状图与评分箱线图可得图12,13,14,15。

对导演与演员进行聚合,得到数据中共有15011名导演,46223名演员。按照作品数量在(0,2], (2,5], (5,10], (10,20], (20,999]进行分组统计导演数量,可以发现,15009名导演中有79.08%只拍过1-2部作品,46220名演员中有75.93%只主演过1-2部作品。忽略那些客串、跑龙套的演员,数据总体符合二八定律,即20%的人占据了行业内的大量资源。

在此,可以通过电影得分、每部电影评论人数以及电影数目寻找优秀的电影导演与演员。这三项指标分别衡量了导演/演员的创作水平,人气以及产能。考虑到电影数据集中可能有少量影视剧/剧场版动画,且影视剧/剧场版动画受众少于电影,但得分普遍要高于电影,这里根据先根据每部电影评论数量、作品数量来筛选导演/演员,再根据电影得分进行排名,并取前30名进行作图,可得图17,18。

结合电影票房网( http://58921.com/ )采集到的3353条票房数据,与豆瓣数据按照电影名称进行匹配,可以得到1995-2020年在中国大陆上映的电影信息,分别分析中国内地电影的数量、票房变化趋势,票房与评分、评价人数、时长、地区以及类型的关系,此外还给出了不同导演与演员的票房表现以及影片票房排名。

如图19所示,国内票房数据与上映的电影数量逐年递增,2020年记录的只是上半年的数据,且由于受疫情影响,票房与数量骤减。这说明在不发生重大事件的情况下,国内电影市场规模正在不断扩大。

对电影数据根据类型进行聚合,绘制散点图21,可以发现:

提取导演/演员姓名,对导演/演员字段进行聚合,计算每个导演/演员的票房总和,上映电影均分、以及执导/参与电影数目进行计算,作出票房总和前30名的导演/演员,可得图22,23,图中导演/演员标号反映了票房排名,具体每位导演/演员的上映影片数量、均分、每部电影评价人数、平均时长与总票房在表5、表6中给出。

最后根据电影票房进行排名,得到票房排名前20的电影如表格7所示,可以看到绝大部分上榜电影都是中国电影,索引序号为3、10、12、14、18、19为美国电影,这也反映了除国产电影之外,好莱坞大片占据较大的市场。

本篇报告采集了1990-2020年间豆瓣电影29033组有效数据,从豆瓣电影的评分、时长、地区、类型、演员、导演以及票房等信息进行分析评价,主要有以下结论:

『捌』 Python分析44130条用户观影数据,挖掘用户与电影之间的隐藏信息!

很多电影也上映,看电影前很多人都喜欢去 『豆瓣』 看影评,所以我爬取44130条 『豆瓣』 的用户观影数据,分析 用户之间 的关系, 电影之间 的联系,以及 用户和电影之间 的隐藏关系。

在****『豆瓣』****平台爬取用户观影数据。

为了获取用户,我选择了其中一部电影的影评,这样可以根据评论的用户去获取其用户名称(**后面爬取用户观影记录只需要****『用户名称』******)。

url中start参数是页数(page 20,每一页20条数据),因此start=0、20、40...,也就是 20的倍数 ,通过改变start参数值就可以获取这 4614条用户的名称。 *

查看网页的标签,可以找到******『用户名称』******值对应的标签属性。

上一步爬取到****『用户名称』****,接着爬取用户观影记录需要用到****『用户名称』。****

[图片上传失败...(image-65a80e-1624889400616)]

通过改变****『用户名称』****,可以获取到不同用户的观影记录。

url中start参数是页数(page 15,每一页15条数据),因此start=0、15、30...,也就是 15的倍数 ,通过改变start参数值就可以获取这 1768条观影记录称。 *

查看网页的标签,可以找到****『电影名』****值对应的标签属性。

excel表有两个标题(用户, 影评)

定义了写入excel函数,这样爬起每一页数据时候调用写入函数将数据保存到excel中。

最后采集了44130条数据(原本是4614个用户,每个用户大约有500~1000条数据,预计 400万条数据 )。但是为了演示分析过程,只爬取每一个用户的前30条观影记录( 因为前30条是最新的 )。

最后这44130条数据会在 下面分享给大家

从豆瓣.xls中读取全部数据放到datalist集合中。

以用户 『mumudancing』 为例进行用户画像

以用户 『mumudancing』 为例,对用户之间进行 电影推荐

以电影 『送你一朵小红花』 为例,对电影之间进行 电影推荐

『玖』 基于Python的电影推荐系统的设计和实现

《基于Python的电影推荐系统的设计和实现》该项目采用技术Python的django框架、mysql数据库 ,项目含有源码、论文、PPT、配套开发软件、软件安装教程、项目发布教程、核心代码介绍视频等

软件开发环境及开发工具:

开发语言:python

使用框架:Django

前端技术:JavaScript、VUE.js(2.X)、css3

开发工具:pycharm、Visual Studio Code、HbuildX

数据库:MySQL 5.7.26(版本号)

数据库管理工具:phpstudy/Navicat或者phpstudy/sqlyog

python版本:python3.0及以上

管理员用例图如下所示:

用户用例图如下所示:

系统功能完整,适合作为毕业设计、课程设计、数据库大作业。

下面是资料信息截图:

下面是系统运行起来后的一些截图:

阅读全文

与电影评论分析Python背景相关的资料

热点内容
男孩看小电影出现反应 浏览:390
太空旅客电影全集视频 浏览:111
花之舞是哪个电影的片尾曲 浏览:315
忠贞的代价电影在线观看 浏览:423
五一最新电影预告 浏览:858
二战俄罗斯电影音乐剪辑 浏览:292
电影扫黑片段 浏览:601
宋仲基最新电影 浏览:34
买票电影票软件哪个好 浏览:19
暮色大电影资源 浏览:364
麦克在看电影英语用英语怎么说 浏览:962
微电影巢 浏览:315
电影蝴蝶公墓资源 浏览:848
经典国外电影音乐 浏览:236
百度搜不到的五个电影网站 浏览:325
战争搞笑小孩外国电影 浏览:303
美国爱情电影音乐题材 浏览:83
微信卖电影看 浏览:513
电影视频岀现评语如何去掉 浏览:902
电影特效最好的软件手机版 浏览:477