导航:首页 > 电影题材 > 描述性统计分析电影业

描述性统计分析电影业

发布时间:2022-11-29 06:34:42

1. 描述性统计分析怎么写

描述统计是将研究中所得的数据加以整理、归类、简化或绘制成图表,以此描述和归纳数据的特征及变量之间的关系的一种最基本的统计方法。描述统计主要涉及数据的集中趋势、离散程度和相关强度,最常用的指标有平均数()、标准差(σx)、相关系数(r)等。

所谓描述性统计分析,就是在表示数量的中心位置的同时,还能表示数量的变异程度(即离散程度)。描述性统计分析一般有二种方法可以进行:

1、频数分布分析

2、列联表分析

综述

描述性研究利用常规检测记录或通过专门调查获得的数据资料(包括实验室检查结果),按不同地区、不同时间及不同人群特征进行分组,描述人群中有关疾病或健康状态以及有关特征和暴露因素的分布状况,在此基础上进行比较分析,获得疾病三间(人群、地区、时间)分布的特征,进而获得病因线索,提出病因假设和线索。是流行病研究工作的起点。

以上内容参考:网络-描述性统计

2. SPSS—描述性统计分析—列联表

什么是列联表
列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。
这里是按两个变量交叉分类的,该列联表称为两维列联表,若按3个变量交叉分类,所得的列联表称为3维列联表,依次类推。3维及以上的列联表通常称为“多维列联表”或“高维列联表”,而一维列联表就是频数分布表。
列联表的结构
二维列联表
r * c 列联表
观察值的分布
百分比分布
期望频数的分布

假设检验
独立性检验
假设观察频数与期望频数没有差别,而统计量χ2值表示二者间的偏离程度。

相关系数
ψ相关系数

皮尔逊定义的列联系数
V相关系数
Fisher精确检验
卡方统计量是近似的,而Fisher精确检验使用的是超几何分布。

相对危险度(Relative Risk, RR)
参考下面的SPSS实例
优势比(Odds Ratio, OR)
参考下面的SPSS实例
Kappa一致性检验
在数据分析中,比较两种预测方法预测结果的一致性用到Kappa检验。
配对χ2检验
通过Kappa检验,解决了两种测量间究竟有无关联的问题,但是通过列联表的观察,发现两位顾问的评价是否不太一致,这种假设又如何来加以分析呢?
McNemar配对χ2检验 就是经典的配对检验,专门用于解决这类问题。
分层χ2检验
分层χ2检验是把研究对象分解成不同层次,按各层对象来进行行变量与列变量的独立性研究。Statistics中Cochran’s and Mantel-Haenszel statistics会自动给出结果。
分层χ2检验是一种很好的控制其他因素的方法,使分析者能得到更准确的结果。如果数据量足够大 ,还可以引入更多的分层因素加以控制。 但是,和SAS中的CMH χ2不同,SPSS提供的CMH χ2检验只能进行二分类变量的检验,而不能进行多分类变量的检验。
检验比较
χ2检验
假设观察频数与期望频数没有差别,而统计量χ2值表示二者间的偏离程度。
卡方检验方法的适用条件

关联程度的度量
χ2检验从定性的角度分析是否存在相关行,而各种关联指标(相对危险度RR与优势比OR)从定量的角度分析相关的程度如何。
Kappa一致性检验与配对χ2检验
Kappa一致性检验对两种方法结果的一致程度进行评价,而配对χ2检验则用于分析两种分类方法的分类结果是否有差异。
分层χ2检验
分层χ2检验是把研究对象分解成不同层次,按各层对象来进行行变量与列变量的独立性研究。Statistics中Cochran’s and Mantel-Haenszel statistics会自动给出结果。
SPSS分析
菜单
Analyze -> Descriptive Statistics -> Crosstabs
实例一:卡方检验和风险评估
数据集(site.sav)
某公司实行数据库营销,其杂志销售部每个月向数据库中的人们发送征订邮件,但是回应率极低。他们希望找到一种好的方法来定位潜在的客户,只向这些客户发放邮件,从而节省人力物力。数据库中的资料包括:个人一般信息(年龄、性别、婚姻状况、收入、受教育水平及是否退休等),个人行为特征(主要交通工具、有无手机、呼机、电视、CD及是否订阅报纸)。另外,在发送邮件后,还有一个变量也加入到了数据库中:是否对邮件进行回应,即是否在邮件的提示性进行杂志购买。经研究发现,报纸订阅与邮件发送有相关性。该部门经理想了解报纸订阅者回应邮件的概率是非订阅者的几倍。
参数设置
统计量
结果分析
交叉制表

列联表分析表明,并没有太多人对杂志的邮件做出回应,但是其中订阅人占了较大比例。
卡方检验

p值为0.000,故认为订阅报纸与邮件回应是相关的。那么报纸订阅者的回应概率是未订阅者的多少倍呢?通过计算RR来解决。
风险估计

对于报纸订阅者而言,邮件响应的相对危险度是其回应概率与非报纸订阅者的回应概率的比值,其估计值是(380/2768) / (299/3632) = 13.7% / 8.2%=1.668,表明报纸订阅者对邮件的响应概率是非报纸订阅者的1.668倍。 或者说报纸订阅者对邮件的无响应的概率是非报纸订阅者的0.94倍。
而优势比即一个事件的Odds Ratio是它发生的概率除以不发生的概率

实例二:Kappa一致性检验和配对卡方检验
数据集(site.sav)
某公司期望扩展业务,增开几家分店,但对开店地址不太确定。于是选了20个地址,请两位资深顾问分别对20个地址作了一个评价,把它们评为好、中、差三个等级,以便确定应对哪些地址进行更进一步调查,那么这两位资深顾问的评价结果是否一致。
参数设置
统计量
结果分析
交叉制表

Kappa一致性检验

Kappa检验的原假设:Kappa=0,即两者完全无关。结果显示Kappa=0.478,P<0.05,拒绝原假设,认为两位顾问的评价结果存在一致性。
配对卡方检验

Kappa一致性检验对两种方法结果的一致程度进行评价,而配对χ2检验则用于分析两种分类方法的分类结果是否有差异。
此处原假设:两顾问的评价结果无差别,而p=0.072>0.05,故接受原假设,认为基本上相同
实例三:分层卡方检验
数据集(cmh.sav)
某零售连锁店对3家分店的客户满意度进行了调查,数据见cmh.sav,其中一项指标是在购物时是否经常向店员寻求帮助,现希望分析寻求帮助与性别有无联系。
统计结果
未分层的卡方检验

将gender和contact分别作为行变量和列变量,并做χ2检验,p<0.05,认为两者间有联系。
因为每家分店的结果可能不一样,上面的卡方检验收到分店因素的影响可能不准确,需要根据分店进行分层统计。
但是分层因素在几个组之间的分布不均,既可能削弱了原本存在的行变量与列变量间的关系,也可能使得原本不存在关系的两个变量关系呈现统计学显著性。
按分店分层卡方检验

可以看到分店的卡方检验并无显著性(p > 0.05),说明每个分店的寻求帮助与性别之间没有强关联。
但是,由于分层后样本量大大减小,这究竟是因为检验效能不足导致的无差异,还是真的无差异?
为此可以使用Cochran’s and Mantel-Haenszel χ2检验来分析。这种方法可以在考虑了分层因素的影响后给出检验结果。
Cochran’s and Mantel-Haenszel χ2检验

首先给出的是层间差异的检验,即考察不同层间gender与contact的联系是否相同。
原假设H0: 分店之间的联系是相同的。
p = 0.638说明,在不同分店层间, gender与contact的联系是相同的。

调整了分层因素作用后的综合OR值=0.636,即去除了不同分店的混杂效应后,和女性相比,男性顾客寻求帮助的优势比为0.636,或者说更不容易寻求帮助。

3. 描述性统计的介绍

描述性研究(descriptive study),又称为描述流行病学(descriptive epidemiology),是流行病学研究方法中最基本的类型,主要用来描述人群中疾病或健康状况及暴露因素的分布情况,目的是提出病因假设,为进一步调查研究提供线索,是分析性研究的基础;还可以用来确定高危人群,评价公共卫生措施的效果等。描述性研究常见类型主要有:现状研究(横断面研究)、生态学研究、病例报告、病例系列分析、个案研究、历史资料分析、比例死亡比研究等。[1]

4. 数据分析之描述性统计

统计学包括 描述性统计 推论统计。

描述性统计 的含义——"A descriptive statistic is a summary statistic that quantitatively describes or summarizes features of a collection of information."

中文翻译:描述性统计是一种汇总统计,用于定量描述或总结信息集合的特征。

推论统计 :根据数据的形态建立出一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体。

本文主要介绍描述性统计,描述性统计又分为 集中趋势 离散趋势

一、集中趋势(Measures of central tendency)
能够对总体的某一特征具有代表性,表明所研究的对象在一定时间、空间条件下的共同性质和一般水平。

1. 众数(Mode)
用于定性的数据,表示一组数据中出现频次最高的数。
优点:不受极端值影响;当数据具有明显的集中趋势时,代表性好;
缺点:缺乏唯一性。

2. 分位数(Quantile)
亦称分位点,是指将一个 随机变量 的 概率分布 范围分为几个等份的数值点,常用的有 中位数 (即二分位数)、 四分位数 、 百分位数 等。

2.1 中位数(Median)
用于定量的数据,表示数值大小位于中间(奇偶总量处理不同)的值。
优点:不受极端值影响;缺点:缺乏敏感性。

2.2 四分位数
第一四分位数 (Q1) ,又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。

第二四分位数 (Q2) ,又称中位数,等于该样本中所有数值由小到大排列后第50%的数字。

第三四分位数 (Q3) ,又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。

第三四分位数与第一四分位数的差距又称四分位距。

3. 平均数(Mean)
3.1 算术平均数:
优点:充分利用所有数据,适用性强;缺点:易受极值影响。

3.2 加权平均数: 根据权重比例来求平均值

3.3 几何平均数

python实现:

二、离散趋势(Measures of Dispersion)
1. 极差
一组数值型数据中最大值和最小值之差,max(x)-min(x),反映了数值样本的数据范围。

2. 方差和标准差
方差 用于衡量数据的分散程度,常见的有总体方差和样本方差,计算方法类似。 标准差 为方差的平方根。

3. 平均差
是数据组中各数据值与其算术平均数离差绝对值的算术平均数。

4. 分位差
其数值越小表明数据越集中,数值越大表明数据越离散。常用的四分位差为:四分位差=(第三个四分位数-第一个四分位数)/2

5. 异众比率
异众比率越大,说明非众数组的频数占总频数的比重越大,众数的代表性就越差;异众比率越小,说明非众数组的频数占总频数的比重越小,众数的代表性越好。

6. 离散系数
离散系数又称变异系数,CV(Coefficient of Variance)表示。CV(Coefficient of Variance):标准差与均值的比值。离散系数越小,数据的离散程度就越小。

python实现:

三、分布形态
1. 偏态系数(Skewness)
偏态系数又称偏差系数(deviation coefficient),偏态系数以平均值与中位数之差对标准差之比率来衡量偏斜的程度,用 SK 表示偏斜系数:偏态系数小于0,因为平均数在众数之左,是一种左偏的分布,又称为 负偏 。偏态系数大于0,因为均值在众数之右,是一种右偏的分布,又称为 正偏

偏态系数是根据众数、中位数与均值各自的性质,通过比较众数或中位数与均值来衡量偏斜度的。

2. 峰态系数(Kurtosis)
峰度系数是用来反映频数分布曲线顶端尖峭或扁平程度的指标,用于衡量离群数据离群度,峰度系数越大,说明该数据集中的极端值越多。在正态分布情况下,峰度系数值是3。>3的峰度系数说明观察量更集中,有比正态分布更短的尾部;<3的峰度系数说明观测量不那么集中,有比正态分布更长的尾部,类似于矩形的均匀分布。峰度系数的标准误用来判断分布的正态性。峰度系数与其标准误的比值用来检验正态性。如果该比值绝对值大于2,将拒绝正态性。

5. 描述性分析是什么

描述性分析

描述性分析是当今企业中最简单,最常见的数据使用方式,因为它通过总结过去的数据(通常以仪表板的形式)来回答“发生了什么”类型的问题。它分析完整的数据或汇总的数值数据样本,并显示连续数据的平均值和偏差–分类数据的百分比和频率。

业务中描述性分析的主要功能是跟踪关键绩效指标(KPI),这些指标描述了基于所选基准的业务绩效。

描述性分析的业务应用包括:KPI仪表板、月收入报告、销售线索概述。

6. 到底什么是描述性统计分析定义是怎样

所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所代表的总体的特征。描述性统计分析的项目很多,常用的如平均数、标准差、中位数、频数分布、正态或偏态程度等等。这些分析是复杂统计分析的基础。
例如:对我国城镇军民的医疗保健消费情况进行统计分析,数据如下:
588.8
407.75
376.71
300.81
287.03
252.2
336
341.85
500.86
294.39
541.06
181.23
266
148.8
322.6
280.78
208.78
208.96
270.24
346.56
228.01
247.31
293.23
266.07
233.27
291.76
264.8
336.24
272.44
307.24
327.05
330.54
进行描述性统计分析结果为:
平均数
308.1053125
标准差
95.06485331
中位数
292.495
最小值
148.8
最大值
588.8
峰度
2.375103692
偏度
1.347690777

7. 描述性统计分析包括哪些内容

描述性统计分析主要包括数据的频数分析、集中趋势分析、离散程度分析、分布以及一些基本的统计图形。

①数据的频数分析。在数据的预处理部分,利用频数分析和交叉频数分析可以检验异常值。

②数据的集中趋势分析。用来反映数据的一般水平,常用的指标有平均值、中位数和众数等。

描述性研究(descriptive study)是指利用常规检测记录或通过专门调查获得的数据资料(包括实验室检查结果),按不同地区、不同时间及不同人群特征进行分组,描述人群中有关疾病或健康状态以及有关特征和暴露因素的分布状况,在此基础上进行比较分析,获得疾病三间(人群、地区、时间)分布的特征,进而获得病因线索,提出病因假设和线索。是流行病研究工作的起点。

8. 什么是描述性分析

描述性分析是社会调查统计分析的第一个步骤,对调查所得的大量数据资料进行初步的整理和归纳,以找出这些资料的内在规律——集中趋势和分散趋势。主要借助各种数据所表示的统计量,如均数、百分比等,进行单因素分析。

事实证明,仅靠百分比或平均差是不能完全反映客观事物的本质的,仅仅对一个样本进行分析也是不够的。这个样本是否能够反映其总体的特征,还需要进行推断性分析。

描述性分析的目的

1、描述某个有关群体的特征;

2、估计某个群体中某种行为方式的发生比率;

3、测量有关产品的知识、偏好与满意度;

4、确定不同营销变量之间的关系;

5、进行预测。

9. 豆瓣电影数据分析

这篇报告是我转行数据分析后的第一篇报告,当时学完了Python,SQL,BI以为再做几个项目就能找工作了,事实上……分析思维、业务,这两者远比工具重要的多。一个多月后回过头来看,这篇报告虽然写得有模有样,但和数据分析报告还是有挺大差别的,主要原因在于:a.只是针对豆瓣电影数据分析太过宽泛了,具体关键指标到底是哪些呢?;b.没有一个确切有效的分析模型/框架,会有种东一块西一块的拼接感。
即便有着这些缺点,我还是想把它挂上来,主要是因为:1.当做Pandas与爬虫(Selenium+Request)练手,总得留下些证明;2.以豆瓣电影进行分析确实很难找到一条业务逻辑线支撑,总体上还是描述统计为主;3.比起网上能搜到的其他豆瓣电影数据分析,它更为详细,可视化效果也不错;

本篇报告旨在针对豆瓣电影1990-2020的电影数据进行分析,首先通过编写Python网络爬虫爬取了51375条电影数据,采集对象包括:电影名称、年份、导演、演员、类型、出品国家、语言、时长、评分、评论数、不同评价占比、网址。经过去重、清洗,最后得到29033条有效电影数据。根据电影评分、时长、地区、类型进行分析,描述了评分与时长、类型的关系,并统计了各个地区电影数量与评分。之后,针对演员、导演对数据进行聚合,给出产量与评分最高的名单。在分析过程中,还发现电影数量今年逐步增加,但评分下降,主要原因是中国地区今年低质量影视作品的增加。

另外,本篇报告还爬取了电影票房网( http://58921.com/ )1995-2020年度国内上映的影片票房,共采集4071条数据,其中3484条有效。进一步,本文分析了国内院线电影票房年度变化趋势,票房与评分、评价人数、时长、地区的关系,票房与电影类型的关联,并给出了票房最高的导演、演员与电影排名。

清洗、去重后,可以看到29033条数据长度、评分、评论数具有以下特点:

结合图1(a)(b)看,可以看到电影数据时长主要集中在90-120分钟之间,向两极呈现阶梯状递减,将数据按照短(60-90分钟),中(90-120分钟),长(120-150分钟),特长(>150分钟)划分,各部分占比为21.06%, 64.15%, 11.95%, 2.85%。

结合图2(a)看,可以看到我们采集到的电影数据评分主要集中在6.0-8.0之间,向两极呈现阶梯状递减,在此按照评分划分区间:2.0-4.0为口碑极差,4.0-6.0为口碑较差,6.0-7.0为口碑尚可,7.0-8.0为口碑较好,8.0-10.0为口碑极佳。

这5种电影数据的占比分别为:5.78%, 23.09%, 30.56%, 29.22%, 11.34%

再将评分数据细化到每年进行观察,可以发现,30年内电影数量与年度电影均分呈反相关,年度均分整体呈现下降趋势,2016年电影均分最低,电影数量最多。

进一步做出每个年份下不同评级等级的电影数据占比,可以发现,近年来,评分在[2.0,6.0)的电影数据占比有着明显提升,评分在[6.0,7.0)的数据占比不变,评分在[7.0,10.0)的数据占比减少,可能原因有:

对照图5,可以发现,评分与时长、评论人数的分布大致呈现漏斗状,高分电影位于漏斗上部,低分电影位于漏斗下部。这意味着,如果一部电影的评论人数很多(特别是超过30w人观影),时长较长(大于120min),那么它大概率是一部好电影。

根据各个国家的电影数量作图,可以得到图6,列出电影数量前十的国家可得表格2,发现美国在电影数量上占第一,达到8490部,中国其次,达6222部。此外,法国,英国,日本的电影数量也超过1000,其余各国电影数量相对较少。这可以说明美国电影有着较大的流量输入,在中国产生了较大的影响。

进一步分析各国电影的质量,依据评分绘制评分箱线图可得图7,在电影数量排名前20的国家中:

接着我们可以探索,哪个国家的电影对豆瓣评分随年份下降的贡献最大,考虑到电影数量对应着评分的权重。根据上述各国的电影评分表现,我们可以猜测电影数量较多的国家可能对年度均分的下降有较大影响。于是,我们再计算出这些国家的年度电影均分,并与整体均分进行比较分析。

再作出中国大陆,中国台湾,中国香港的均分箱线图图9(a),可以看到,大陆电影均分低于港台电影,且存在大量低分电影拉低了箱体的位置。

分析相关性可得,大陆、香港、台湾电影年度均分与全部评分关联度分别为R=0.979,0.919,0.822,说明滤去台湾和香港电影,大陆电影年度均分的变化趋势与全部评分变化更接近。图9(b)可以进一步反映这一点。

可以看到,大部分类型集中在X×Y=[10000,30000]×[6.00,7.50]的区间范围内,剧情、喜剧、爱情、犯罪、动作类电影数量上较多,说明这些题材的电影是近三十年比较热门的题材,其中剧情类电影占比最多,音乐、传记类电影平均得分更高,但在数量上较少,动作、惊悚类电影评论人数虽多,但评价普遍偏低。

除此之外,还有两块区域值得关注:

根据类型对电影数据进行聚合,整理得到各类型电影评分的时间序列,计算它们与整体均分时间序列的相关性,可得表格4与图11,可以看到剧情,喜剧,悬疑这三种类型片与总分趋势变化相关性最强,同时剧情、喜剧类电影在电影数量上也最多,因此可以认为这两类电影对于下跌趋势影响最大,但其余类别电影的相关性也达到了0.9以上,说明几种热门的电影得分的变化趋势与总体均分趋势一致。

前面已经得知,中美两国电影占比最高,且对于均分时间序列的影响最大。在此,进一步对两国电影进行类型分析,选取几种主要的类型(数量上较多,且相关性较高)进行分析,分别是剧情,喜剧,爱情,惊悚,动作,悬疑类电影,绘制近年来几类电影的数量变化柱状图与评分箱线图可得图12,13,14,15。

对导演与演员进行聚合,得到数据中共有15011名导演,46223名演员。按照作品数量在(0,2], (2,5], (5,10], (10,20], (20,999]进行分组统计导演数量,可以发现,15009名导演中有79.08%只拍过1-2部作品,46220名演员中有75.93%只主演过1-2部作品。忽略那些客串、跑龙套的演员,数据总体符合二八定律,即20%的人占据了行业内的大量资源。

在此,可以通过电影得分、每部电影评论人数以及电影数目寻找优秀的电影导演与演员。这三项指标分别衡量了导演/演员的创作水平,人气以及产能。考虑到电影数据集中可能有少量影视剧/剧场版动画,且影视剧/剧场版动画受众少于电影,但得分普遍要高于电影,这里根据先根据每部电影评论数量、作品数量来筛选导演/演员,再根据电影得分进行排名,并取前30名进行作图,可得图17,18。

结合电影票房网( http://58921.com/ )采集到的3353条票房数据,与豆瓣数据按照电影名称进行匹配,可以得到1995-2020年在中国大陆上映的电影信息,分别分析中国内地电影的数量、票房变化趋势,票房与评分、评价人数、时长、地区以及类型的关系,此外还给出了不同导演与演员的票房表现以及影片票房排名。

如图19所示,国内票房数据与上映的电影数量逐年递增,2020年记录的只是上半年的数据,且由于受疫情影响,票房与数量骤减。这说明在不发生重大事件的情况下,国内电影市场规模正在不断扩大。

对电影数据根据类型进行聚合,绘制散点图21,可以发现:

提取导演/演员姓名,对导演/演员字段进行聚合,计算每个导演/演员的票房总和,上映电影均分、以及执导/参与电影数目进行计算,作出票房总和前30名的导演/演员,可得图22,23,图中导演/演员标号反映了票房排名,具体每位导演/演员的上映影片数量、均分、每部电影评价人数、平均时长与总票房在表5、表6中给出。

最后根据电影票房进行排名,得到票房排名前20的电影如表格7所示,可以看到绝大部分上榜电影都是中国电影,索引序号为3、10、12、14、18、19为美国电影,这也反映了除国产电影之外,好莱坞大片占据较大的市场。

本篇报告采集了1990-2020年间豆瓣电影29033组有效数据,从豆瓣电影的评分、时长、地区、类型、演员、导演以及票房等信息进行分析评价,主要有以下结论:

10. 电影票房分析及预测

从20世纪初的西洋镜戏法到今天占据全球电影业总产值的三分之一强,资本的加入让好莱坞在过去百年的发展中变得越来越理智--比起商业片流水线缔造者,它更像一个数学家--它精于计算每一项决定对利润的贡献:《蝙蝠侠》续集是否要接受男演员片酬的狮子大开口以获得百分之几的忠实粉丝买票入场;是否要在动作片的第37分钟增加感情戏以争取女性观众;是否要为这部烂透了的原著聘请收费高昂的剧本医生;一个小金人编剧的名头到底值多少钱……这就是在电影开机之前最为重要的环节:票房预测。

华尔街不仅给好莱坞带来了密集的资金支持,也带来了理性的金融工程技术,后者好像一把衡量艺术的尺子。一位浸淫于电影行业的金融人士一语中的:"在这个行业里充斥着暧昧不清、晦暗不明,有真正的艺术家、也有忽悠的吹水者,但到底怎么判断是否能合作,项目是否有投资价值,全凭经验"。

如何预测
早在80年代,美国票房收入预测的先驱BarryLitman对美国80年代近700部电影进行分析推出票房收入预测模型。该系统对之后美国电影投资界产生了颠覆性的影响。电影票房预测系统能分析预测不同种类电影的票房价值,已经成为国际电影产业投融资的重要参考工具,对电影产品定价及衍生产品开发都具有较强的指导作用。

预测系统
电影票房量化分析及预测系统(Box Revenue Prediction)是在考察导演、主要演员、制片、发行及市场营销、电影生命周期、电影类型、发行地区等影响电影票房的诸多因素基础上,基于资产定价模型,综合采用金融工程和回归统计分析方法研发出的预测系统。它能分析预测不同种类电影的票房价值,成为电影产业投融资重要参考工具,对电影产品定价及衍生产品开发都具有较强的指导作用。

中国第一套BRP系统

2012年1月,中影集团联合艾亿新融资本推出了国内第一套基于电影票房预测的估值与定价分析系统--BRP系统。通过对过去4年中600多部影片的统计分析,该BRP系统发现了6条有趣的现象:

·低成本的影片一般会比大片更卖座

·无名小卒主演的影片要比明星主演的影片利润率更高

·类型的艺术特征跟利润之间不存在直接关联,但评论的多寡(无论好评或者劣评)跟利润之间有密切关系

·不含暴力、色情成分的家庭影片最容易赚钱

·大片的续集要比普通新片更容易赚钱

·明星在为影片带来更高票房的同时,也往往拉低了利润率,因为大部分收入进了明星的口袋

阅读全文

与描述性统计分析电影业相关的资料

热点内容
奥特曼电影游戏免费下载 浏览:756
战狼电影完整版 浏览:456
华尔街女狼电影完整版 浏览:699
白狐电影西瓜网免费观看 浏览:565
大女王电影网站 浏览:357
经典的电影怎么评价 浏览:818
夜幕猎人电影迅雷下载 浏览:849
关于日本学生的电影有哪些方面 浏览:43
最新网络小说电影 浏览:111
电影最危险游戏在线播放 浏览:450
哪个网站可以免费下载看电影 浏览:424
国产色a情电影迅雷下载迅雷下载 浏览:617
哪些爱情电影值得一看 浏览:740
如何创业拍电影 浏览:959
世界杯电影票中国 浏览:155
电影资源有需要的吗 浏览:178
最新出的电影2017 浏览:429
吞噬星空动漫资源电影天堂 浏览:43
两个世界交互的电影 浏览:128
今年韩国有哪些好看的电影 浏览:79