导航:首页 > 电影题材 > 用博弈论分析电影档期选择

用博弈论分析电影档期选择

发布时间:2022-09-13 02:39:11

① 求有关博弈论的电影。或者生活中的一些有关博弈论的事

在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoner's dilemma)博弈模型。该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果两个犯罪嫌疑人都坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪,各被判刑8年;如果只有一个犯罪嫌疑人坦白,另一个人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。下表给出了这个博弈的支付矩阵。 囚徒困境博弈 [Prisoner's dilemma] A╲B 坦白 抵赖
坦白 -8,-8 0,-10
抵赖 -10,0 -1,-1

电影貌似没什么了。给个悬赏吧

② 博弈论的经典模型

经济学中的“智猪博弈”(Pigs’payoffs)

这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。

那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。

原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。

“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。

如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。

改变方案一:减量方案。投食仅原来的一半分量。结果是小猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。

如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。

改变方案二:增量方案。投食为原来的一倍分量。结果是小猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。

对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。

改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费完。

对于游戏设计者,这是一个最好的方案。成本不高,但收获最大。

原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。
博弈论的经典模型:威慑模型
威慑博弈的完整名称是进入威慑博弈,是研究参与者想进入某领域,而与该领域已有竞争者的博弈模型。假定有两个参与人,一个想进入某行业,称之为进入者,另一个已在同一行业占有一席之地,称之为先入者。对进入者来说,不管先入者是否设置壁垒,其最优目标都是进入。而对先入者来说,要设置壁垒,必须付出巨大成本,否则不如默许。进入威慑博弈模型的启示是:要做一件事情,必须确定一个可行的目标,不怕困难,全力以赴向目标努力,目标就会实现。另外,不是所有的威慑都没有用处,付出巨大成本的威慑是起作用的,而要想使威慑起作用的,必须付出巨大成本。同时,进入威慑博弈也提出了一个问题,就是威胁和承诺的可信度问题,威胁实际上也是一种承诺。威胁和承诺是否可行,取决于其成本的大小,取决于其成本和收益的比较。一般而言,成本巨大的,或者成本高于收益的威胁和承诺,可信度就比较高,反之则低。实际生活中有些制度见效甚微,就是因为惩罚力度太小,使得违规者的违规收益高于违规成本。

博弈论的经典模型:斗鸡模型
斗鸡博弈(Chicken Game).在西方,鸡是胆小的象征,斗鸡博弈指在竞争关系中,谁的胆小,谁先失败。现在假设,有两个人要过一条独木桥,这条桥一次只能过一个人,两个人同时相向而进,在河中间碰上了。这个博弈的结果第一种就是如果两个人继续前进,双方都会掉水里,双方丢面子,这是一种组合。第二种是,双方都退下来,双方也都是丢面子,但是都掉不到水里去。第三种结果,甲方退下来,丢面子,乙过去。第四种结果,乙退下来,丢面子,甲顺利通过。在这四种结果中,第一种是两败俱伤;三、四两种是一胜一败,第二种是两败不伤,这就是斗鸡博弈。在这个模型中,最优策略有两个,就是第三、第四两种选择,即甲退下来乙先过去,或者乙退下来甲先过去。因为两种选择对整个社会来说效益最大,损失最小。两虎相争勇者胜,如何处理竞争中的两虎关系呢?一般有四种办法:第一种是谈判,双方约定一个条件,其中一个先退下来;第二种是制度,建立一种制度,规定从南到北的先退,或者从北到南的先退,或者后上桥者先退;第三种是时间,双方僵持一段时间,谁先吃不住劲谁先退;第四种是妥协,妥协不一定是最优策略,但是至少可以保证取得次优结果。在工作生活中乃至处理国际关系时,得饶人处且饶人,退
博弈论的经典模型:情侣博弈
情侣博弈。假定一对热恋中的情侣,每周末见一次,必须见,否则活不下去。男的喜欢看足球,女的喜欢看电影。见面后,面临选择,看足球还是看电影?热恋中的情侣因为爱,会牺牲自己的爱好去满足对方。如果去看足球,男的满足程度为四个单位,女的满足程度是两个单位;去看电影,女的满足程度是四个单位,男的满足程度是两个单位。在这个博弈中,有三个变量非常重要。一个变量是顺序,就是谁先提出来,比如男的先提出来,女方尽管更愿意看电影,但是男方已经提出来了,她不愿意违背他,只好同意,结果他们就去看足球。相反的情况也是一样。第二个是一次博弈还是多次博弈。如果是多次博弈,双方就会大体上形成一种默契,这一周看电影,下一周看足球。第三个取决于感情的深度。处于依赖程度比较高的一方,对对方更加顺从照顾一些。一般而言,情侣之间的博弈是一个动态过程,因为恋爱就是双方之间较长时期的磨合、了解过程。如果我们假定情侣博弈是一个动态博弈,而且总是男的先决策,女的后决策,那么就会出现一种非常有趣的决策情景。就女方来说,无论男的是选择足球,还是选择电影,她的决策均为四个:一个是追随决策,就是男的选择什么,她就选择什么;二是对抗策略,就是男的选择什么,她偏不选什么;三是偏好策略,就是无论男的选什么,她都选电影,因为这是她的偏好;四是成全策略,就是无论男的选什么,她都选足球,因为足球是男的偏好,她宁可牺牲自己的偏好,而成全男方。情侣博弈在现实生活中到处存在,它让人们思考如何人去关心别人、理解别人,处理好人际关系。
一步还扩天空,都是从斗鸡博弈可以总结出的道理。

③ 在国内上映的国产电影和引进电影都是如何在档期上博弈的

整体盘子来看,是特别有趣的。比如《变四》上映期间,正常的逻辑都是避开这个档期,大部分电影也都是这么做的。但是《分手大师》却在同一天就上了,侧面叫板,吃准了一定有一帮人是不爱看变四的,而且当时也没有什么好电影可以选。需要看具体情况来分析案例。如果碰上好莱坞 A 级制作,基本的策略都是避开。国产电影很少提早宣布档期的原因特别简单,就是因为影视工业不成熟,初具雏形。Disney 敢说自己某部电影两年后的某一天上线,是因为有一套成熟的工业逻辑在支撑它,就是能够这么精确。

④ 博弈论思维

博弈论(Game Theory)是 研究具有斗争或竞争性质现象的数学理论和方法,二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的[1] 。

1928年,著名科学家、计算机之父冯·诺依曼证明了博弈论定理。

1950年,普林斯顿数学系教授约翰·纳什,通过不动点原理证明了均衡点的存在,并且提出了著名的纳什均衡理论,将博弈论引入到了除数学以外的其它领域内。

1994年,约翰·纳什与约翰·海萨尼、莱茵哈德·泽尔滕,处于表彰他们对博弈论做出的贡献,授予三位当年的诺贝尔经济学奖,从此博弈论被推上了学术界高峰地位。2001年一部以约翰·纳什为传记改编的电影《美丽心灵》,诠释了纳什的传奇人生。

2001年,乔治·阿科尔洛夫、斯宾塞和约瑟夫·斯蒂格利茨,利用博弈论分析了市场的信息不对称问题,为现代信息经济学奠定了基础。

2005年,托马斯·克罗姆比·谢林和罗伯特·约翰·奥曼通过博弈论分析了冲突和合作的理解。

2007年,罗杰·迈尔森和埃里克·马斯金、里奥尼德·赫维茨,通过博弈论的研究推动了机制设计理论的发展。

2012年,罗斯与沙普利根据博弈论创建了稳定分配理论。

2014年,梯若尔在产业组织理论以及串谋问题上,采用了博弈论的思想,让理论和问题得以解决,并且在规制理论上也有创新。

纳什均衡是指在一组组合策略之中,对于每个参与者来说,只要其他人不改变自己的策略,那么他就无法改善自己的状况。简单来说在一种稳定的状态下任何人单独改变策略都得不到好处。

举个例子:我和我的朋友去酒吧去找对象,对面吧台前面有许多美女,一群是金色头发(blonde),还有一群是褐色头发(brunette),此时如果我们要上前搭讪,那么会有这么几种可能性:

①如果我和我的朋友同时找所有的金发女郎搭讪,那么我们找到合适对象的机会是0,因为我们无法深入了解所有人。(0,0)

②如果我的朋友去找所有的金发女郎搭讪,而我去找一位褐发女郎搭讪,那么我成功的概率远大于我的朋友,因为我可以通过足够深入的聊天去了解彼此。(2,5)

③如果我的朋友去找一位褐发女郎搭讪,而我去找所有的金发女郎搭讪,相同的道理我朋友成功的概率会远高于我。(5,2)

④如果我和我的朋友都分别去找一位褐发女郎搭讪,那么我们成功的概率相差无几。(2,2)

在这组找对象的策略组合中,第四种策略即属于纳什均衡策略。也就是说双方可以达到共赢的状态,任何一方变动策略都会是的局面失去平衡。

(1)博弈树

博弈树:又称扩展式博弈模型,由节点、主干、枝干构成的策略组合模型。

如图所示:节点:①、②;主干:U、D;枝干:U‘、D‘

起点①为初始决策点,竞争者:“我”

主干U为“进入”决策的条件:“找所有的金发女郎搭讪”

主干D为“不进入”决策的条件:“找一位褐发女郎搭讪”决策

中间决策点②,竞争者:“我的朋友”

枝干有两个策略:一个是“去找所有金发女郎”,另一个是“去找一位褐发女郎“

决策终止点:决策结果分别为(0,0)和(2,5)

(2)博弈表

(1)囚徒困境

话说甲乙两名囚犯因抢劫罪被捕入狱,警察需要录口供判定二者的罪行:

如果甲乙都招供罪行,那么各判2年;

如果囚犯乙招供所有罪行都是甲做的,甲保持沉默,那么甲判刑10年,乙当庭释放;

如果囚犯乙保持沉默,甲招供所有罪行都是乙做的,那么甲当庭释放,乙判10年;

如果两个人都保持沉默,什么都不肯说,那么警察找不到确切证据判刑,只能各判半年。

1950年,由就职于兰德公司的梅里尔·弗勒德和梅尔文·德雷希尔拟定出相关困境的理论,后来由顾问艾伯特·帕克以囚徒方式阐述,并命名为“囚徒困境”[2]。 该博弈案例反应的是个人的最优策略并非是集体的最优策略,从案例中可以推出,从最优的策略角度来看,二者都保持沉默不招供,各自只会判半年,然而从人的本性选择来看,却都倾向于招供罪行,因为每个人都怕自己万一保持沉默,对方把罪行全推到自己头上,判10年的罪行。这是人性的弱点所导致的非理性博弈。

(2)智猪博弈

猪圈里有一只大猪和一只小猪,猪圈一边放着一个由绳索钩挂的猪槽,另一边是连接伸缩的踏板,如果它们想吃到食物必须踩一下这一边的踏板,另一边会有10份食物从猪槽里掉下来。无论谁踩踏板,都会消耗2份食物的能量,下面有这几种情况:

两只猪一起踩踏板,大猪比小猪吃得快,大猪吃了8份,小猪才吃了2份。(6,0)

大猪踩踏板,小猪守在槽边,由于小猪没有出力,只能吃4份食物,大猪可以吃6份。(6,6)

小猪踩踏板,大猪守在槽边,大猪吃得比小猪快,小猪跑过来时,10份全被大猪吃完了。(10,-2)

两只猪都不踩踏板,全部没食物吃。(0,0)

在企业中,大企业就好比大猪,中小企业就好比是小猪。控制按钮可以比作技术创新,可以给企业带来收益。大企业资金雄厚,生产力大,有更多的能力进行技术创新,推出新产品后可以迅速占领市场获得高额利润。而小企业的最优选择就是等待,等大企业技术创新后,跟在大企业后,抢占市场份额,从这种创新中获得利益[3] 。

(1) 零和博弈:表示所有博弈方的利益之和为零或一个常数,即一方有所得,其他方必有所失[4] 。生活中的俗语:“不是你死就是我亡”、“非黑即白”。

(2)非零和博弈:是与零和博弈相对的概念,一方有所得,另一方也可能有所得,最终是一个双赢或者双输的局面。生活中的俗语:“合作共赢”、“同归于尽”。

参考文献:

[1]360网络:博弈论

[2]Wikpadia:囚徒困境

[3]MBA智库:智猪博弈

[4]Wikpadia:零和博弈

本文首发于微信公众号“认知与新思维”。

⑤ 用博弈论解决电影上市问题

相隔十五天不需要推迟,A有足够时间获得票房与关注度,若相隔时间短,两部精彩的影片同台博弈反而能促进对比消费,增加收益。若A的关注度明显小于B,则由博弈论,A应当既做对个体有利,又做对整体有利的事,A选择暂时退出可以避免市场达到饱和值,从而增加收益。

⑥ 如何用博弈论的方法进行问题分析

博弈论是一种被大家已经传说的很玄一种理论,作为理财师我今天给大家具体的说明一下,博弈论实际就是一种方法,但是也只是运用方法的一种,博弈论是现代数学的一个新分支,也是运筹学的一个重要组成内容,用博弈论分析问题有下面几个方法:

第一、科学的利用数据优势,进行传统的企业数据分析,这样可以比较精确的进行企业的一些数据化的考量,有利于企业的发展。

第二、我们可以利用博弈论在平等的企业交往中发挥优势,在企业之间的对局中,每一个企业都有各自利用的数据,我们要做的是通过博弈论的数据使对方的策略变换成为,一种自己的对抗策略,达到取胜的一种分析问题的途径。

第三、博弈论在个人处理事情的时候,其实就是我们需要在决策的时候,必须将其他人的决策和一些个人的想法,纳入自己的决策考虑之内,当然也需要把别人对于自己的考虑也要纳入考虑之中,做到一个圆满的解决和分析问题的依据。

第四、我们在生活中也可以利用博弈论解决问题,那就是把一件事情的正反两面,转化为合理的数据,然后进行迭代考虑的情形,然后我们进行决策的时候,选择最有利于自己的战略【也就是strategy】,这样可以更好的分析问题和解决问题。

第五、博弈论分析问题的时候会十分的全面,必须把一些普遍和普及的事情,计算在其中,也就是说我们必须知道人人都会在约束条件下,最大化自身的利益,这时候你要做的是分析这件事情的利益,把各放的利益全部衡量进去。

上面我们说的就是利用博弈论分析问题的一些基本的方法和理论,但是需要说明的是,博弈论不是万能的,还要看你的心态,看你做事情的思考角度,以及你如何运用自己得到的数据,博弈论分析和研究的问题,主要是让大家如何使得人们在市场经济中,自愿做出大家都遵守和实施的有效制度安排,以增进社会的福利的机制,并没有大家想象中的那么神奇。

⑦ 博弈论是什么留学生博弈论辅导应该找谁

博弈论?Game Theory?又称对策论,起源于本世纪初,1994年冯·诺依曼和摩根斯坦恩合著的《博弈论和经济行为》奠定了博弈论的理论基础。20世纪50年代以来,纳什、泽尔腾、海萨尼等人使博弈论最终成熟并进入实用。近20年来,博弈论作为分析和解决冲突和合作的工具,在管理科学、国际政治、生态学等领域得到广泛的应用。
简单地说,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间决策的均衡。博弈论由3个基本要素组成:一是决策主体?Player?,又可以译为参与人或局中人;二是给定的信息结构,可以理解为参与人可选择的策略和行动空间,又叫策略集;三是效用?Utility?,是可以定义或量化的参与人的利益,也是所有参与人真正关心的东西,又称偏好或支付函数。参与人,策略集和效用构成了一个基本的博弈。
博弈论完整的课程有20多节,它的优点就是适合初学者,为什么这么说呢?
1、没有涉及太多的数学内容,一些基本的微积分知识就够用了。
2、老师会在课上带领学生做一些有趣的游戏,主要以经济学的实验为主。
3、博弈论的基础模型讲完之后,剩下的就是辅助应用,加深下记忆。

⑧ 浅浅地谈一下博弈论

看到这些天许多朋友在谈论博弈论,无论是赞美也好,批评也罢,大家似乎说的都有道理。而这篇文章里也想谈谈我自己的一些看法。

1.当许多人在批评博弈论的时候,他们在批评什么

其实一些针对博弈论的批评文章对博弈论的批评事实上是针对绝大多数经济学数理模型的批评。例如,博弈论和大多数微观经济学模型一样,都试图客观化、基数化地去衡量不同个体间的“效用”。只不过在大多数博弈论的分析中,这种“客观效用”的假设普遍隐含在参与个体的报酬(payoff)中。对于分析者来说,他必须针对他的分析对象(参与者)作出“先验”或者“主观”的报酬假设,即便这种报酬是二元(Binary)的。比如在囚徒困境中,分析者需要假设参与博弈的囚徒和他自己一样,都厌恶被出卖,或者厌恶更久的监牢之灾。

或许有人会说,个体报酬只是货币数量或者其他什么东西,但事实上我们在进行博弈分析时,都将报酬当做了效用。因为博弈论的一个基本假设就是参与个体会最大化自己的报酬,这和效用最大化的假设事实上是一回事。

2.多次博弈,合作博弈还有信息不完备不应当被用来批评博弈论

我看到一些文章试图改变类似囚徒困境那样最简化的博弈模型的前提条件来批评或者挑战博弈论本身,这其实是有问题的。这事实上是在用博弈论来批评博弈论,又或者说,用一个特殊情景来反驳另一个特殊情景。

我们都知道最简化的囚徒困境是一个单次的非合作博弈。而的确,现在的主流经济学也已经将这个简化的博弈模型衍伸出各种复杂的多次或者合作博弈情景。

例如,当囚徒们的博弈次数是100次,且囚徒间使用的是“以牙还牙”的博弈策略(也就是说,囚徒可以在被捕入狱之前就商量好被捕后的对答策略),这样囚徒困境的博弈结果就会与单纯的单次非合作博弈之结果完全不同——即囚徒们会相互合作,而不是背叛,因为只要第一次选择了背叛,则之后的99次都会是互相背叛的结果。因此在有限次的多次博弈中,囚徒间的纳什均衡就是(或者至少是接近)帕累托最优。

如果我们用上述的博弈结果来反驳最简化的囚徒困境,这看起来似乎有那么一点道理,但这只是因为前提条件改变了而已。而上述博弈结果恰恰又是在博弈论本身的理论框架里得出的,因此,这种反驳事实上却是证明了博弈论的有效。

同样,类似古诺双寡头反应曲线这样的早期博弈模型也受到了一些批评。这些批评主要是针对反应曲线或者反应函数的其中一个基本假设——即参与者拥有完备的信息。也就是说,参与者相互知道彼此的策略含义以及后果。

比如有这么一个博弈:

在这个博弈中,有A和B两家公司。对于他们来说,有两种策略供他们选择:参加促销或者不参加促销。括号内分别为A,B的报酬(Payoff),比如(2,0)表示A参加促销并且报酬为2,B不促销并且报酬为0。这时我们可以用博弈论常用到的“逆向归纳法”来求解这个博弈的纳什均衡。

我们先从公司B开始。当B在左边时,B会选择不促销,因为对于B来说,(2,0)> (-2,-2);当B在右边时,B会选择促销,因为对于B来说,(0,2)> (0,0)。

此时A与我们一样,都对B的这些“反应”决策了如指掌,所以对于A来说,现在只有两个选择,即整个博弈可以降为:

很简单,此时A将会选择“促销”,因为对于A来说,(2,0)> (0,2)。所以这个博弈的纳什均衡会是A选择促销,而B选择不促销,均衡报酬(equilibrium payoff)为(2,0)。

为什么笔者要在此处花费笔墨来解释这个博弈?因为事实上很多批评正是针对这种博弈的“完备信息”假设,即A可以完全掌握B的报酬情况以及B的反应策略。“完全信息”当然是一个很严格的假设,使得这种博弈离现实实在太远。但主流博弈论的发展会忽视这个问题吗?

其实现代博弈论已经考虑到了这个严重的缺陷,所以类似“贝叶斯博弈(Beyesian game)”这样的新博弈理论正试图在传统博弈论中加入信息不完备(不完全与不完美)的前提。

但这并不是说贝叶斯博弈就是正确的,就是合格的经济学理论。贝叶斯博弈中所涉及例如概率密度函数(PDF)、参与者的风险中性假设、参与者的期望效用函数,这些都使得贝叶斯博弈也存在一些基础性的缺陷,它始终是数学模型,而不是经济现实。因此,博弈论事实上就是一个包装着经济学外衣的数学研究,贝叶斯博弈论也一样。

3.“逆向归纳法”可能是博弈论分析中隐含的最大问题

我们在上文求解纳什均衡用到的方法其实就是所谓的“逆向归纳法”或者“倒推法” (Backward Inction),是博弈论分析中非常常用的一种分析方法。而正是这种方法本身,却隐含着一些不容易被发现的逻辑问题(或者说是其本身的数学问题)。

我们不妨来考虑这么一个故事:

在某个周日,法庭上,法官正在宣读其对某罪犯A的刑罚:“我现在宣判你将在7天之内被执行死刑。” 罪犯A问:“那究竟是哪一天呢?!” 法官答道:“只有等到执行死刑那天的早上你才会知道。”

罪犯A回到监牢里,因为即将奔赴黄泉所以表现得心神不宁,旁边的另一位囚徒B看到了,问:“你在为何事烦闷不安?”

答:“我将在7天内被执行死刑,而我只有等到执行死刑那天的早上才会知道,我好害怕。”

囚徒B:“别担心,他们一定不会在下周日杀你。”

罪犯A:“为什么?”

囚徒B开始了他的“逆向推理”:“因为如果周六你还活着,你就会知道死刑执行日将一定会在周日,这显然违背了法官的承诺(即还没有等到执行死刑那天的早上,罪犯A就已经知道了自己的死期)。”

罪犯A:“对啊!”

囚徒B:“所以周日可以排除了。同样,他们也一定不会在周六杀你,因为你在周五会知道自己的死期要么是周六要么是周日,既然周日已经被排除了,当然就只剩下周六了。而如果你提前知道了自己周六将会被处死,这又违背了法官的承诺。”

罪犯A:“我知道了!所以周五周四周三周二都可以被同样的思路给排除掉!当然,他们也不可能在明天将我处死,因为此时此刻我已经发现了这个计划!太好了,我其实不会被处死!”

结果在周三的早上,罪犯A被告知这天将会是他的死期,下午,罪犯A带着疑问被处死了。

这个逆推过程的问题出在哪里?你能看出来吗?

其实许多复杂的博弈论的逆推分析过程中都涉及这种问题,然而这种问题却因为经过复杂的数理包装和改变之后,变得更加难以发现,这就使得逆推法不仅受到经济学家关于信息完备性的批评,同时也正遭受越来越多来自数学家的质疑。

电影《七宗罪》的结尾有段对白,老警官引用了海明威的一段话,他说:“海明威曾经说:‘这个世界很美好,值得人们为之奋斗。’我只同意后半句。”

许多人说:“博弈无处不在,所以你们不应该批评博弈论。” 而我只同意这句话的前半句。博弈不是博弈论,同样,批评博弈论并不是试图否认博弈的存在。正如我们可以看到代表着不同学派的经济学家为一些基础理论和互相批的死去活来。就拿货币理论来说,当奥地利学派的经济学家在批评芝加哥学派的货币理论时,他们难道是在试图否认“货币”的存在吗?

⑨ 博弈论基础的内容简介

清晰、精确,并间以丰富的例证,此书将是尚未涉足博弈论的应用经济学者入门必读,亦为博弈论大师们讲授这门课的最好教材。(戴维·克雷普斯,期坦福大学)此书的力量在于从博弈论的最新发展中撷取了大量例证,吉本斯善于把抽象的问题讲得简单易懂。这方面他真是个天才,使人对这一理论兴味大增。绝大多数例子本身就妙趣横生——简直令人不忍释卷,这种理论和应用的完美结合正是读者希望此类书籍能够达到的。(舍文·罗森,芝加哥大学)这《博弈论基础》在理论和应用的结合方面是非常杰出的,例子已成为每章不可分割的组成部分,不仅为学习技术方法提供了可信的例证,同时还介绍了经济学应用领域的最新进展。此书对希望掌握博弈论应用的学生和研究人员都是必读之物。(詹姆斯·波特巴,MIT)《博弈论基础》为各类读者介绍现代经济学最为常用的分析工具之一,不仅针对那些将要学习博弈论专业的,还面向那些计划在应用经济领域建立(甚至只是使用)博弈论模型的读者。吉本斯在强调纯理论的同时,还同样强调这一理论在经济学的的应用;对抽象博弈理论的正式讨论不是《博弈论基础》重点,广泛的应用显示出在经济学的不同领域都提出了相似问题,并都可使用相同的博弈论工具进行分析。为强调该理论广阔的发展前景,《博弈论基础》从经济学的多种分支——产业组织、劳动力经济学、宏观经济学、金融理论和国际经济学中广泛取例。(作者系约翰逊管理学院的助理教授)。

阅读全文

与用博弈论分析电影档期选择相关的资料

热点内容
凉山之战电影完整版 浏览:57
天堂鸟电影完整版 浏览:745
美国电影僵尸世界2015 浏览:271
2000公安题材电影大全 浏览:156
电影上海王李梦 浏览:93
服部平次出场的电影有哪些 浏览:145
近代史南京条约微电影 浏览:256
宗教题材的电影有哪些梁家辉 浏览:715
怎么在赫兹上传电影 浏览:510
最好看的十部动作电影完整版 浏览:113
赣州电视台微电影 浏览:583
爱爱两男电影迅雷下载 浏览:732
电影狮子头是哪个公司 浏览:851
迅雷哥电影版手机在线播放 浏览:353
电影军事禁区哪里拍的 浏览:734
神马午夜免费福利电影1000集 浏览:133
兄弟连迅雷电影天堂 浏览:266
微电影女星 浏览:813
小龙女全集完整版电影 浏览:623
世界十大鬼屋翻拍电影 浏览:448