1. Python爬虫实战(1)requests爬取豆瓣电影TOP250
爬取时间:2020/11/25
系统环境:Windows 10
所用工具:Jupyter NotebookPython 3.0
涉及的库:requestslxmlpandasmatplotlib
umpy
蛋肥想法: 先将电影名称、原名、评分、评价人数、分类信息从网站上爬取下来。
蛋肥想法: print数据列表后发现电影原名、分类信息等存在不需要的字符,需预先处理;同时因为后续想做一个豆瓣电影TOP250的维度分布图,而同一电影存在多个发行国家、类型(如“法国 美国 / 剧情 动作 犯罪”),为了简(偷)便(懒),这里均取第一个作为记入的数据;最后将数据保存为xlsx。
蛋肥想法: 蛋肥想知道在豆瓣电影TOP250中年份、国家、类型的维度数据,为了练手,使用刚才保存成xlsx的数据,并分别画成雷达图、柱形图、扇形图。
2. python爬去电影用什么解释器
python爬取电影用Anaconda解释器。根据查询相关公开信息显示,在Win10系统下用python集成开发环境实现Scrapy框架网络爬取电影解释器用Anaconda,借助网页的结构和属性等特性来解析网页,只需要简单的几条语句,,就可以用来方便的从网页中爬取电影。
3. Python豆瓣电影《肖申克的救赎》评论爬取
先看效果图:
地址:( https://movie.douban.com/subject/1292052/comments?sort=time&status=P)
爬取前1w条评论
存储成txt文档
数据预处理
中文分词
统计top10的高频词
可视化展示高频词
根据词频生成词云
审核评论
================================================================
配置准备
中文分词需要jieba
词云绘制需要wordcloud
可视化展示中需要的中文字体
网上公开资源中找一个中文停用词表
根据分词结果自己制作新增词表
准备一张词云背景图(附加项,不做要求)
paddlehub配置
#安装jieba分词和词云
pip install jieba
pip install wordcloud
#安装paddle
pip install --upgrade PaddlePaddle
#安装模型
#hub install porn_detection_lstm==1.1.0
pip install --upgrade paddlehub
pip install numpy
#安装Beautifulsoup
pip install BeautifulSoup4
Github地址: https://github.com/mikite/python_sp_shawshank
有可能遇到的问题:
1.UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe8 in position 1: invalid continuation byte
解决方法:
1.不使用urlLib换做requests
2.去掉请求头中的 'Accept-Encoding': 'gzip, deflate, br'
3.返回值reponse 转字符串指定编码utf-8
# 'Accept-Encoding': 'gzip, deflate, br',
2.关于cookie
解决方法:
1.去豆瓣请求头中复制cookie设置到请求头中
'Cookie': 'bid=WD6_t6hVqgM'
3.请求返回418的问题
解决方案模拟设置请求头,设置user-agent
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36',
4.使用beautifulsoup获取不到评论
解决方法:
第一步:指定解析参数为'lxml'
soupComment = BeautifulSoup(html, 'lxml')
第二步:
findAll方法指定css文件的class名
print('网页内容:', soupComment.prettify())
comments = soupComment.findAll(class_='short')
点击获取源码
4. 怎样用python获取电影
实验室这段时间要采集电影的信息,给出了一个很大的数据集,数据集包含了4000多个电影名,需要我写一个爬虫来爬取电影名对应的电影信息。
其实在实际运作中,根本就不需要爬虫,只需要一点简单的Python基础就可以了。
前置需求:
Python3语法基础
HTTP网络基础
===================================
第一步,确定API的提供方。IMDb是最大的电影数据库,与其相对的,有一个OMDb的网站提供了API供使用。这家网站的API非常友好,易于使用。
第二步,确定网址的格式。
第三步,了解基本的Requests库的使用方法。
5. Python爬虫实战,Python多线程抓取5千多部最新电影下载链接
利用Python多线程爬了5000多部最新电影下载链接,废话不多说~
让我们愉快地开始吧~
Python版本: 3.6.4
相关模块:
requests模块;
re模块;
csv模块;
以及一些Python自带的模块。
安装Python并添加到环境变量,pip安装需要的相关模块即可。
拿到链接之后,接下来就是继续访问这些链接,然后拿到电影的下载链接
但是这里还是有很多的小细节,例如我们需要拿到电影的总页数,其次这么多的页面,一个线程不知道要跑到什么时候,所以我们首先先拿到总页码,然后用多线程来进行任务的分配
我们首先先拿到总页码,然后用多线程来进行任务的分配
总页数其实我们用re正则来获取
爬取的内容存取到csv,也可以写个函数来存取
开启4个进程来下载链接
您学废了吗?最后祝大家天天进步!!学习Python最重要的就是心态。我们在学习过程中必然会遇到很多难题,可能自己想破脑袋都无法解决。这都是正常的,千万别急着否定自己,怀疑自己。如果大家在刚开始学习中遇到困难,想找一个python学习交流环境,可以加入我们,领取学习资料,一起讨论,会节约很多时间,减少很多遇到的难题。