Ⅰ python爬虫抓取电影top20排名怎么写
初步接触python爬虫(其实python也是才起步),发现一段代码研究了一下,觉得还比较有用处,Mark下。
上代码:
#!/usr/bin/python#coding=utf-8#Author: Andrew_liu#mender:cy"""
一个简单的Python爬虫, 用于抓取豆瓣电影Top前100的电影的名称
Anthor: Andrew_liu
mender:cy
Version: 0.0.2
Date: 2017-03-02
Language: Python2.7.12
Editor: JetBrains PyCharm 4.5.4
"""import stringimport reimport urllib2import timeclass DouBanSpider(object) :
"""类的简要说明
主要用于抓取豆瓣Top100的电影名称
Attributes:
page: 用于表示当前所处的抓取页面
cur_url: 用于表示当前争取抓取页面的url
datas: 存储处理好的抓取到的电影名称
_top_num: 用于记录当前的top号码
"""
def __init__(self):
self.page = 1
self.cur_url = "h0?start={page}&filter=&type="
self.datas = []
self._top_num = 1
print u"豆瓣电影爬虫准备就绪, 准备爬取数据..."
def get_page(self, cur_page):
"""
根据当前页码爬取网页HTML
Args:
cur_page: 表示当前所抓取的网站页码
Returns:
返回抓取到整个页面的HTML(unicode编码)
Raises:
URLError:url引发的异常
"""
url = self.cur_url try:
my_page = urllib2.urlopen(url.format(page=(cur_page - 1) * 25)).read().decode("utf-8") except urllib2.URLError, e: if hasattr(e, "code"): print "The server couldn't fulfill the request."
print "Error code: %s" % e.code elif hasattr(e, "reason"): print "We failed to reach a server. Please check your url and read the Reason"
print "Reason: %s" % e.reason return my_page def find_title(self, my_page):
"""
通过返回的整个网页HTML, 正则匹配前100的电影名称
Args:
my_page: 传入页面的HTML文本用于正则匹配
"""
temp_data = []
movie_items = re.findall(r'<span.*?class="title">(.*?)</span>', my_page, re.S) for index, item in enumerate(movie_items): if item.find(" ") == -1:
temp_data.append("Top" + str(self._top_num) + " " + item)
self._top_num += 1
self.datas.extend(temp_data) def start_spider(self):
"""
爬虫入口, 并控制爬虫抓取页面的范围
"""
while self.page <= 4:
my_page = self.get_page(self.page)
self.find_title(my_page)
self.page += 1def main():
print u"""
###############################
一个简单的豆瓣电影前100爬虫
Author: Andrew_liu
mender: cy
Version: 0.0.2
Date: 2017-03-02
###############################
"""
my_spider = DouBanSpider()
my_spider.start_spider()
fobj = open('/data/moxiaokai/HelloWorld/cyTest/blogcode/top_move.txt', 'w+') for item in my_spider.datas: print item
fobj.write(item.encode("utf-8")+'
')
time.sleep(0.1) print u"豆瓣爬虫爬取完成"if __name__ == '__main__':
main()
运行结果:
Ⅱ 豆瓣电影数据分析
这篇报告是我转行数据分析后的第一篇报告,当时学完了Python,SQL,BI以为再做几个项目就能找工作了,事实上……分析思维、业务,这两者远比工具重要的多。一个多月后回过头来看,这篇报告虽然写得有模有样,但和数据分析报告还是有挺大差别的,主要原因在于:a.只是针对豆瓣电影数据分析太过宽泛了,具体关键指标到底是哪些呢?;b.没有一个确切有效的分析模型/框架,会有种东一块西一块的拼接感。
即便有着这些缺点,我还是想把它挂上来,主要是因为:1.当做Pandas与爬虫(Selenium+Request)练手,总得留下些证明;2.以豆瓣电影进行分析确实很难找到一条业务逻辑线支撑,总体上还是描述统计为主;3.比起网上能搜到的其他豆瓣电影数据分析,它更为详细,可视化效果也不错;
本篇报告旨在针对豆瓣电影1990-2020的电影数据进行分析,首先通过编写Python网络爬虫爬取了51375条电影数据,采集对象包括:电影名称、年份、导演、演员、类型、出品国家、语言、时长、评分、评论数、不同评价占比、网址。经过去重、清洗,最后得到29033条有效电影数据。根据电影评分、时长、地区、类型进行分析,描述了评分与时长、类型的关系,并统计了各个地区电影数量与评分。之后,针对演员、导演对数据进行聚合,给出产量与评分最高的名单。在分析过程中,还发现电影数量今年逐步增加,但评分下降,主要原因是中国地区今年低质量影视作品的增加。
另外,本篇报告还爬取了电影票房网( http://58921.com/ )1995-2020年度国内上映的影片票房,共采集4071条数据,其中3484条有效。进一步,本文分析了国内院线电影票房年度变化趋势,票房与评分、评价人数、时长、地区的关系,票房与电影类型的关联,并给出了票房最高的导演、演员与电影排名。
清洗、去重后,可以看到29033条数据长度、评分、评论数具有以下特点:
结合图1(a)(b)看,可以看到电影数据时长主要集中在90-120分钟之间,向两极呈现阶梯状递减,将数据按照短(60-90分钟),中(90-120分钟),长(120-150分钟),特长(>150分钟)划分,各部分占比为21.06%, 64.15%, 11.95%, 2.85%。
结合图2(a)看,可以看到我们采集到的电影数据评分主要集中在6.0-8.0之间,向两极呈现阶梯状递减,在此按照评分划分区间:2.0-4.0为口碑极差,4.0-6.0为口碑较差,6.0-7.0为口碑尚可,7.0-8.0为口碑较好,8.0-10.0为口碑极佳。
这5种电影数据的占比分别为:5.78%, 23.09%, 30.56%, 29.22%, 11.34%
再将评分数据细化到每年进行观察,可以发现,30年内电影数量与年度电影均分呈反相关,年度均分整体呈现下降趋势,2016年电影均分最低,电影数量最多。
进一步做出每个年份下不同评级等级的电影数据占比,可以发现,近年来,评分在[2.0,6.0)的电影数据占比有着明显提升,评分在[6.0,7.0)的数据占比不变,评分在[7.0,10.0)的数据占比减少,可能原因有:
对照图5,可以发现,评分与时长、评论人数的分布大致呈现漏斗状,高分电影位于漏斗上部,低分电影位于漏斗下部。这意味着,如果一部电影的评论人数很多(特别是超过30w人观影),时长较长(大于120min),那么它大概率是一部好电影。
根据各个国家的电影数量作图,可以得到图6,列出电影数量前十的国家可得表格2,发现美国在电影数量上占第一,达到8490部,中国其次,达6222部。此外,法国,英国,日本的电影数量也超过1000,其余各国电影数量相对较少。这可以说明美国电影有着较大的流量输入,在中国产生了较大的影响。
进一步分析各国电影的质量,依据评分绘制评分箱线图可得图7,在电影数量排名前20的国家中:
接着我们可以探索,哪个国家的电影对豆瓣评分随年份下降的贡献最大,考虑到电影数量对应着评分的权重。根据上述各国的电影评分表现,我们可以猜测电影数量较多的国家可能对年度均分的下降有较大影响。于是,我们再计算出这些国家的年度电影均分,并与整体均分进行比较分析。
再作出中国大陆,中国台湾,中国香港的均分箱线图图9(a),可以看到,大陆电影均分低于港台电影,且存在大量低分电影拉低了箱体的位置。
分析相关性可得,大陆、香港、台湾电影年度均分与全部评分关联度分别为R=0.979,0.919,0.822,说明滤去台湾和香港电影,大陆电影年度均分的变化趋势与全部评分变化更接近。图9(b)可以进一步反映这一点。
可以看到,大部分类型集中在X×Y=[10000,30000]×[6.00,7.50]的区间范围内,剧情、喜剧、爱情、犯罪、动作类电影数量上较多,说明这些题材的电影是近三十年比较热门的题材,其中剧情类电影占比最多,音乐、传记类电影平均得分更高,但在数量上较少,动作、惊悚类电影评论人数虽多,但评价普遍偏低。
除此之外,还有两块区域值得关注:
根据类型对电影数据进行聚合,整理得到各类型电影评分的时间序列,计算它们与整体均分时间序列的相关性,可得表格4与图11,可以看到剧情,喜剧,悬疑这三种类型片与总分趋势变化相关性最强,同时剧情、喜剧类电影在电影数量上也最多,因此可以认为这两类电影对于下跌趋势影响最大,但其余类别电影的相关性也达到了0.9以上,说明几种热门的电影得分的变化趋势与总体均分趋势一致。
前面已经得知,中美两国电影占比最高,且对于均分时间序列的影响最大。在此,进一步对两国电影进行类型分析,选取几种主要的类型(数量上较多,且相关性较高)进行分析,分别是剧情,喜剧,爱情,惊悚,动作,悬疑类电影,绘制近年来几类电影的数量变化柱状图与评分箱线图可得图12,13,14,15。
对导演与演员进行聚合,得到数据中共有15011名导演,46223名演员。按照作品数量在(0,2], (2,5], (5,10], (10,20], (20,999]进行分组统计导演数量,可以发现,15009名导演中有79.08%只拍过1-2部作品,46220名演员中有75.93%只主演过1-2部作品。忽略那些客串、跑龙套的演员,数据总体符合二八定律,即20%的人占据了行业内的大量资源。
在此,可以通过电影得分、每部电影评论人数以及电影数目寻找优秀的电影导演与演员。这三项指标分别衡量了导演/演员的创作水平,人气以及产能。考虑到电影数据集中可能有少量影视剧/剧场版动画,且影视剧/剧场版动画受众少于电影,但得分普遍要高于电影,这里根据先根据每部电影评论数量、作品数量来筛选导演/演员,再根据电影得分进行排名,并取前30名进行作图,可得图17,18。
结合电影票房网( http://58921.com/ )采集到的3353条票房数据,与豆瓣数据按照电影名称进行匹配,可以得到1995-2020年在中国大陆上映的电影信息,分别分析中国内地电影的数量、票房变化趋势,票房与评分、评价人数、时长、地区以及类型的关系,此外还给出了不同导演与演员的票房表现以及影片票房排名。
如图19所示,国内票房数据与上映的电影数量逐年递增,2020年记录的只是上半年的数据,且由于受疫情影响,票房与数量骤减。这说明在不发生重大事件的情况下,国内电影市场规模正在不断扩大。
对电影数据根据类型进行聚合,绘制散点图21,可以发现:
提取导演/演员姓名,对导演/演员字段进行聚合,计算每个导演/演员的票房总和,上映电影均分、以及执导/参与电影数目进行计算,作出票房总和前30名的导演/演员,可得图22,23,图中导演/演员标号反映了票房排名,具体每位导演/演员的上映影片数量、均分、每部电影评价人数、平均时长与总票房在表5、表6中给出。
最后根据电影票房进行排名,得到票房排名前20的电影如表格7所示,可以看到绝大部分上榜电影都是中国电影,索引序号为3、10、12、14、18、19为美国电影,这也反映了除国产电影之外,好莱坞大片占据较大的市场。
本篇报告采集了1990-2020年间豆瓣电影29033组有效数据,从豆瓣电影的评分、时长、地区、类型、演员、导演以及票房等信息进行分析评价,主要有以下结论:
Ⅲ python爬虫看电影会有什么影响
闲着在家想看电影,但是猛地不知道要看啥电影,脑子想半天也想不出来一个好电影名字!干脆直接在豆瓣电影上获取最近热门的电影,然后一个一个挨着看打发时间!
获取豆瓣电影信息也是学爬虫的一个入门例子,不知道为啥好多人学爬虫都拿豆瓣电影来练手,一个应该是爬取比较简单,另一个应该是这个平台反爬措施比较low,接下来让我们来看看怎么去实现获取豆瓣电影前200个热门电影信息!
1.请求数据
第一步先打开豆瓣电影网页,分析请求看怎样才能请求到数据。
刷新豆瓣电影网页,从浏览器自带的开发工具network中XHR可以看到各种请求,其中标黄的search_subject?type_movie这个请求就是请求电影信息,下面的type_tv就是请求电视剧信息的。从右边标黄的request url中看到是请求的链接,但参数信息都被编码,用urllib.parse.unquote()方法来进行解码:
解码后的请求连接如图所示,猜想page_limt为每次请求到的数据量,page_start为从第几页开始请求,将这个链接在浏览器中打开来验证一下猜想。
看到返回的是一个json字符串,里面包含50条电影信息,其中有名字,评分,链接等,将page_start = 0 变为1,就请求到下一个50条信息。根据链接的这个规律,可以对page_start 不断赋值,从而实现多条信息的获取!(公众号 ly戏说编程)
第二步构造请求头,即看看浏览器通过这个链接向服务器发送了什么请求参数才拿到这些json数据,打开浏览器开发者工具。
按照图中1到4步可以看到这个请求的request headers,将请求头里面的信息全部拿出来,构造为爬虫的请求头。
坑:请求头构造的时候Accept-Encoding要将br去掉。原因:Accept-Encoding用来声明浏览器支持的编码类型,一般有gzip,deflate,br 等等。但在python3的requests包中:
response.content 字节方式的响应体,会自动为你解码 gzip 和 deflate 压缩 类型:bytes
reponse.text 字符串方式的响应体,会自动根据响应头部的字符编码进行解码。类型:str
但偏偏不支持br的解码,如果加上br可能造成你请求回来的是乱码!所以要去掉br!
这样通过模拟浏览器请求数据,就可以得到服务器返回的json字符串,再解析json字符串得到每一个电影的详情链接。
2.提取信息
在得到每一个电影的链接后,依次访问每一个电影的链接,然后根据关键信息所在标签用xpath进行提取。这里只对电影名字、年份、导演、类型、评分进行提取。
例如提取1917,在网页右击“1917”,然后选择检查,在Elements中1917所在位置右击,选择Copy,然后Copy XPath即可拿到1917的Xpath路径,其它信息的提取操作步骤一样。
但是不同电影网页里面相同类型的信息所在的XPath路径可能不同,这就需要找到他们的相同处,提取相同的XPath路径,从而进行大批量提取。
比如电影类型,用直接 xpath的方法就不好使,不同电影网页里面电影类型所处的标签位置不同,用 xpath拷贝出来的路径有差异,这就需要根据所在标签的property属性来获取。主要代码如下:
对每一网页链接里面的信息进行提取,这里每提取一个就停1s,为的是避免平台检测到异常访问,这样就拿到每一个电影的信息,然后再将这信息保存到excel中,效果如图所示
前几名都是奥斯卡得奖电影有木有!感兴趣的小伙伴快来试试!话不多说,挨着去看电影咯!去哪看?去公众号 ly戏说编程 首页vip影院看,里面还有各种学习资源免费分享!
Ⅳ Python豆瓣电影《肖申克的救赎》评论爬取
先看效果图:
地址:( https://movie.douban.com/subject/1292052/comments?sort=time&status=P)
爬取前1w条评论
存储成txt文档
数据预处理
中文分词
统计top10的高频词
可视化展示高频词
根据词频生成词云
审核评论
================================================================
配置准备
中文分词需要jieba
词云绘制需要wordcloud
可视化展示中需要的中文字体
网上公开资源中找一个中文停用词表
根据分词结果自己制作新增词表
准备一张词云背景图(附加项,不做要求)
paddlehub配置
#安装jieba分词和词云
pip install jieba
pip install wordcloud
#安装paddle
pip install --upgrade PaddlePaddle
#安装模型
#hub install porn_detection_lstm==1.1.0
pip install --upgrade paddlehub
pip install numpy
#安装Beautifulsoup
pip install BeautifulSoup4
Github地址: https://github.com/mikite/python_sp_shawshank
有可能遇到的问题:
1.UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe8 in position 1: invalid continuation byte
解决方法:
1.不使用urlLib换做requests
2.去掉请求头中的 'Accept-Encoding': 'gzip, deflate, br'
3.返回值reponse 转字符串指定编码utf-8
# 'Accept-Encoding': 'gzip, deflate, br',
2.关于cookie
解决方法:
1.去豆瓣请求头中复制cookie设置到请求头中
'Cookie': 'bid=WD6_t6hVqgM'
3.请求返回418的问题
解决方案模拟设置请求头,设置user-agent
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36',
4.使用beautifulsoup获取不到评论
解决方法:
第一步:指定解析参数为'lxml'
soupComment = BeautifulSoup(html, 'lxml')
第二步:
findAll方法指定css文件的class名
print('网页内容:', soupComment.prettify())
comments = soupComment.findAll(class_='short')
点击获取源码
Ⅳ Python抓取豆瓣电影排行榜
1.观察url
首先观察一下网址的结构 http://movie.douban.com/top250?start=0&filter=&type= :
可以看到,问号?后有三个参数 start、filter、type,其中start代表页码,每页展示25部电影,0代表第一页,以此类推25代表第二页,50代表第三页...
filter顾名思义,是过滤已经看过的电影,filter和type在这里不重要,可以不管。
2.查看网页源代码
打开上面的网址,查看源代码,可以看到信息的展示结构如下:
1 <ol class="grid_view"> 2 <li> 3 <div class="item"> 4 <div class="pic"> 5 <em class="">1</em> 6 <a href="http://movie.douban.com/subject/1292052/"> 7 <img alt="肖申克的救赎" src="http://img3.douban.com/view/movie_poster_cover/ipst/public/p480747492.jpg" class=""> 8 </a> 9 </div>10 <div class="info">11 <div class="hd">12 <a href="http://movie.douban.com/subject/1292052/" class="">13 <span class="title">肖申克的救赎</span>14 <span class="title"> / The Shawshank Redemption</span>15 <span class="other"> / 月黑高飞(港) / 刺激1995(台)</span>16 </a>17 18 19 <span class="playable">[可播放]</span>20 </div>21 <div class="bd">22 <p class="">23 导演: 弗兰克·德拉邦特 Frank Darabont 主演: 蒂姆·罗宾斯 Tim Robbins /...<br>24 1994 / 美国 / 犯罪 剧情25 </p>26 27 28 <div class="star">29 <span class="rating5-t"><em>9.6</em></span>30 <span>646374人评价</span>31 </div>32 33 <p class="quote">34 <span class="inq">希望让人自由。</span>35 </p>36 </div>37 </div>38 </div>39 </li>
其中<em class="">1</em>代表排名,<span class="title">肖申克的救赎</span>代表电影名,其他信息的含义也很容易能看出来。
于是接下来可以写正则表达式:
1 pattern = re.compile(u'<div.*?class="item">.*?<div.*?class="pic">.*?' 2 + u'<em.*?class="">(.*?)</em>.*?' 3 + u'<div.*?class="info">.*?<span.*?class="title">(.*?)' 4 + u'</span>.*?<span.*?class="title">(.*?)</span>.*?' 5 + u'<span.*?class="other">(.*?)</span>.*?</a>.*?' 6 + u'<div.*?class="bd">.*?<p.*?class="">.*?' 7 + u'导演: (.*?) ' 8 + u'主演: (.*?)<br>' 9 + u'(.*?) / (.*?) / '10 + u'(.*?)</p>'11 + u'.*?<div.*?class="star">.*?<em>(.*?)</em>'12 + u'.*?<span>(.*?)人评价</span>.*?<p.*?class="quote">.*?'13 + u'<span.*?class="inq">(.*?)</span>.*?</p>', re.S)
在此处flag参数re.S代表多行匹配。
3.使用面向对象的设计模式编码
代码如下:
1 # -*- coding:utf-8 -*- 2 __author__ = 'Jz' 3 import urllib2 4 import re 5 import sys 6 7 class MovieTop250: 8 def __init__(self): 9 #设置默认编码格式为utf-810 reload(sys)11 sys.setdefaultencoding('utf-8')12 self.start = 013 self.param = '&filter=&type='14 self.headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64)'}15 self.movieList = []16 self.filePath = 'D:/coding_file/python_file/File/DoubanTop250.txt'17 18 def getPage(self):19 try:20 URL = 'http://movie.douban.com/top250?start=' + str(self.start)21 request = urllib2.Request(url = URL, headers = self.headers)22 response = urllib2.urlopen(request)23 page = response.read().decode('utf-8')24 pageNum = (self.start + 25)/2525 print '正在抓取第' + str(pageNum) + '页数据...' 26 self.start += 2527 return page28 except urllib2.URLError, e:29 if hasattr(e, 'reason'):30 print '抓取失败,具体原因:', e.reason31 32 def getMovie(self):33 pattern = re.compile(u'<div.*?class="item">.*?<div.*?class="pic">.*?'34 + u'<em.*?class="">(.*?)</em>.*?'35 + u'<div.*?class="info">.*?<span.*?class="title">(.*?)'36 + u'</span>.*?<span.*?class="title">(.*?)</span>.*?'37 + u'<span.*?class="other">(.*?)</span>.*?</a>.*?'38 + u'<div.*?class="bd">.*?<p.*?class="">.*?'39 + u'导演: (.*?) '40 + u'主演: (.*?)<br>'41 + u'(.*?) / (.*?) / '42 + u'(.*?)</p>'43 + u'.*?<div.*?class="star">.*?<em>(.*?)</em>'44 + u'.*?<span>(.*?)人评价</span>.*?<p.*?class="quote">.*?'45 + u'<span.*?class="inq">(.*?)</span>.*?</p>', re.S)46 while self.start <= 225:47 page = self.getPage()48 movies = re.findall(pattern, page)49 for movie in movies:50 self.movieList.append([movie[0], movie[1], movie[2].lstrip(' / '),
51 movie[3].lstrip(' / '), movie[4],
52 movie[5], movie[6].lstrip(), movie[7], movie[8].rstrip(),53 movie[9], movie[10], movie[11]])54 55 def writeTxt(self):56 fileTop250 = open(self.filePath, 'w')57 try:58 for movie in self.movieList:59 fileTop250.write('电影排名:' + movie[0] + '\r\n')60 fileTop250.write('电影名称:' + movie[1] + '\r\n')61 fileTop250.write('外文名称:' + movie[2] + '\r\n')62 fileTop250.write('电影别名:' + movie[3] + '\r\n')63 fileTop250.write('导演姓名:' + movie[4] + '\r\n')64 fileTop250.write('参与主演:' + movie[5] + '\r\n')65 fileTop250.write('上映年份:' + movie[6] + '\r\n')66 fileTop250.write('制作国家/地区:' + movie[7] + '\r\n')67 fileTop250.write('电影类别:' + movie[8] + '\r\n')68 fileTop250.write('电影评分:' + movie[9] + '\r\n')69 fileTop250.write('参评人数:' + movie[10] + '\r\n')70 fileTop250.write('简短影评:' + movie[11] + '\r\n\r\n')71 print '文件写入成功...'72 finally:73 fileTop250.close()74 75 def main(self):76 print '正在从豆瓣电影Top250抓取数据...'77 self.getMovie()78 self.writeTxt()79 print '抓取完毕...'80 81 DouBanSpider = MovieTop250()82 DouBanSpider.main()
代码比较简单,最后将信息写入一个文件,没有什么需要解释的地方。
Ⅵ 怎样避开豆瓣对爬虫的封锁,从而抓取豆瓣上电影内容
在互联网中,有网络爬虫的地方,绝对少不了反爬虫的身影。网站反爬虫的拦截前提是要正确区分人类访问用户和网络机器人,当发现可疑目标时,通过限制IP地址等措施阻止你继续访问。爬虫该如何突破反爬虫限制?
一、构建合理的HTTP请求头
HTTP的请求头是在你每次向网络服务器发送请求时,传递的一组属性和配置信息。由于浏览器和Python爬虫发送的请求头不同,有可能被反爬虫检测出来。
二、设置cookie的学问
Cookie是一把双刃剑,有它不行,没它更不行。网站会通过cookie跟踪你的访问过程,如果发现你有爬虫行为会立刻中断你的访问,比如你特别快的填写表单,或者短时间内浏览大量页面。而正确地处理cookie,又可以避免很多采集问题,建议在采集网站过程中,检查一下这些网站生成的cookie,然后想想哪一个是爬虫需要处理的。
三、正常的时间访问路径
合理控制采集速度,是Python爬虫不应该破坏的规则,尽量为每个页面访问时间增加一点儿间隔,可以有效帮助你避免反爬虫。
四、使用http
对于分布式爬虫和已经遭遇反爬虫的人来说,使用http将成为你的首选。Ipidea分布地区广,可满足分布式爬虫使用需要。支持api提取,对Python爬虫来说再适合不过。
Ⅶ Python爬虫实战(1)requests爬取豆瓣电影TOP250
爬取时间:2020/11/25
系统环境:Windows 10
所用工具:Jupyter NotebookPython 3.0
涉及的库:requestslxmlpandasmatplotlib
umpy
蛋肥想法: 先将电影名称、原名、评分、评价人数、分类信息从网站上爬取下来。
蛋肥想法: print数据列表后发现电影原名、分类信息等存在不需要的字符,需预先处理;同时因为后续想做一个豆瓣电影TOP250的维度分布图,而同一电影存在多个发行国家、类型(如“法国 美国 / 剧情 动作 犯罪”),为了简(偷)便(懒),这里均取第一个作为记入的数据;最后将数据保存为xlsx。
蛋肥想法: 蛋肥想知道在豆瓣电影TOP250中年份、国家、类型的维度数据,为了练手,使用刚才保存成xlsx的数据,并分别画成雷达图、柱形图、扇形图。
Ⅷ Python爬虫实战,Python多线程抓取5千多部最新电影下载链接
利用Python多线程爬了5000多部最新电影下载链接,废话不多说~
让我们愉快地开始吧~
Python版本: 3.6.4
相关模块:
requests模块;
re模块;
csv模块;
以及一些Python自带的模块。
安装Python并添加到环境变量,pip安装需要的相关模块即可。
拿到链接之后,接下来就是继续访问这些链接,然后拿到电影的下载链接
但是这里还是有很多的小细节,例如我们需要拿到电影的总页数,其次这么多的页面,一个线程不知道要跑到什么时候,所以我们首先先拿到总页码,然后用多线程来进行任务的分配
我们首先先拿到总页码,然后用多线程来进行任务的分配
总页数其实我们用re正则来获取
爬取的内容存取到csv,也可以写个函数来存取
开启4个进程来下载链接
您学废了吗?最后祝大家天天进步!!学习Python最重要的就是心态。我们在学习过程中必然会遇到很多难题,可能自己想破脑袋都无法解决。这都是正常的,千万别急着否定自己,怀疑自己。如果大家在刚开始学习中遇到困难,想找一个python学习交流环境,可以加入我们,领取学习资料,一起讨论,会节约很多时间,减少很多遇到的难题。
Ⅸ python怎么抓取豆瓣电影url
#!/usr/bin/env python2.7# encoding=utf-8"""
爬取豆瓣电影TOP250 - 完整示例代码
"""import codecsimport requestsfrom bs4 import BeautifulSoup
DOWNLOAD_URL = 'httn.com/top250/'def download_page(url):
return requests.get(url, headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.80 Safari/537.36'
}).contentdef parse_html(html):
soup = BeautifulSoup(html)
movie_list_soup = soup.find('ol', attrs={'class': 'grid_view'})
movie_name_list = [] for movie_li in movie_list_soup.find_all('li'):
detail = movie_li.find('div', attrs={'class': 'hd'})
movie_name = detail.find('span', attrs={'class': 'title'}).getText()
movie_name_list.append(movie_name)
next_page = soup.find('span', attrs={'class': 'next'}).find('a') if next_page: return movie_name_list, DOWNLOAD_URL + next_page['href'] return movie_name_list, Nonedef main():
url = DOWNLOAD_URL with codecs.open('movies', 'wb', encoding='utf-8') as fp: while url:
html = download_page(url)
movies, url = parse_html(html)
fp.write(u'{movies}\n'.format(movies='\n'.join(movies)))if __name__ == '__main__':
main()0414243444546474849505152
简单说明下,在目录下会生成一个文档存放电影名。python2
Ⅹ .利用python获得豆瓣电影前30部电影的中文片名,排名,导演,主演,上映时间
热门频道
首页
博客
研修院
VIP
APP
问答
下载
社区
推荐频道
活动
招聘
专题
打开CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
打开APP
python 网络爬虫 1.2 获取豆瓣TOP250电影的中英文名、港台名、导演、上映年份、电影分类以及评分,将数据存入文档。 原创
2021-07-19 01:03:15
2点赞
zynaln
码龄8年
关注
题目:
获取豆瓣TOP250电影的中英文名、港台名、导演、上映年份、电影分类以及评分,将数据存入文档。
代码:
输出结果:
文章知识点与官方知识档案匹配
Python入门技能树网络爬虫urllib
201761 人正在系统学习中
打开CSDN APP,看更多技术内容
最新发布 用python爬取豆瓣影评及影片信息(评论时间、用户ID、评论内容)
用python爬取豆瓣影评及影片信息(评论时间、用户ID、评论内容)
继续访问
python
写评论
7
14
2
踩
分享