1. 告訴你如何用大數據推動影視產業
關於大數據在影視方面的案例,Netflix 這個詞估計大家都快聽到耳朵起繭了,頻繁被提及。比如《紙牌屋》的成功 。
大數據技術在電影方面的應用,主要在於於電影劇本分析、電影營銷分析、電影用戶行為分析。
2. 如何度量大數據對於電影產業的影響
文化產業引入大數據技術有著先天優勢。首先,文化產業所擁有的數據具備較高的消費價值。由於文化產業所涉及的行業和產品大多和消費者直接相關,能夠直接為用戶所消費,有著明確的直接消費價值。其次,文化產業本身就是數據和內容創造的行業,能夠不斷地產生或獲得新的數據資源。根據美國的統計資料,文化傳媒行業數據是僅次於政府信息數據的第二大數據來源。第三,文化產業本身就擁有極其雄厚的用戶資源,由於文化產業直接面向消費者,由此擁有廣闊的用戶基數和規模,而基於龐大的用戶資源進行數據分析,則將成為文化產業未來基於大數據業務轉型的關鍵性條件。
3. 爛片成堆,數據分析告訴你為什麼攔不住春節期間看電影
根據貓眼電影的實時數據,截止2018年2月22日下午5時,2018年春節檔的六部中國電影總票房已經突破63.8億元——10億美元。這幾乎是2017年春節檔同期總票房的兩倍。可以說,今年的春節檔電影打破了不少歷史記錄,用實實在在的票房讓大家看到了中國觀眾的觀影熱情。
貓眼大數據顯示,春節期間的主要觀影人群來自三四線城市,而且觀影人群的年齡也較為均衡。也就是說,大齡觀眾的比例增加了。
春節是闔家團圓的日子,也是我國法定假日里最長的假期之一。在春節期間,大家可以說是有大把休閑娛樂的時間。回家過年,百無聊賴,總要打發打發時間嘛!拉著爸媽一起去看電影,也是很時髦的。
隨著近幾年我國電影業的蓬勃發展,大量院線在三四線城市建成,也為觀影提供了必要的硬體條件。再加上,生活在大城市的人大多有去電影院觀影的習慣,當他們返鄉後,也會帶動身邊的親戚朋友一起去觀影。
所以說,春節檔對於電影公司來說簡直就是天時地利人和的大好商機啊!觀眾的審美也有了提高,並不那麼容易就會為爛片買單,所以電影公司也知道,必須拍出好片子排在春節檔,才能真正賺得盆滿缽滿。春節檔期間,電影公司一般會有一些補貼,用誘人的價格吸引觀眾。這期間看電影是很實惠的,也許二三十元就能看到一場2D電影。拖家帶口的觀眾自然也是想看便宜電影啊。
中國電影春季檔的正式形成不到五年時間,但是已經用次次刷新紀錄的高票房證明了中國市場的實力。電影公司努力在春節期間推出佳作,推廣力度很大,而中國觀眾也慢慢被培養出了在春節期間和親戚朋友看電影的習慣
4. 大數據行業的數據精準嗎
大數據需要採集非常多的數據,越詳細越好,有時候為了追求數據的量,確實會有無用的數據,大數據的分析結果也不一定準確,只是一個概率統計而已
5. 為什麼要選擇電影數據分析與可視化這個論題
摘要
6. 如何利用大數據分析工具分析豆瓣電影
小組功能是豆瓣對用戶分析的利器。兩個用戶加同一個小組,說明他們之間的興趣愛好會很接近。
讀書、音樂、電影等等也是類似。根據這些數據,豆瓣能准確猜測出用戶的各種資料,例如地域、性別、年齡、學歷、學校、喜好等等,只有當有了這些數據的時候,豆瓣電台才成為可能。
7. 為何近年來美國電影偏好大數據和機器學習的電影
我個人覺得造成這種想像的有兩部分原因,第一是社會背景原因,是因為當代信息進步、科技發展日新月異,電影市場發展自然也要跟隨時代步伐,拍攝與社會相匹配的電影,另一部分是電影市場要求,則是因為消費者,消費者喜歡看什麼,電影商自然要投其所好拍什麼。
社會背景原因
就我個人來看,近幾年來,美國偏愛拍攝大數據和機器學習的電影應該就是由上述兩點原因。
8. 大數據於國內影視行業的意義
大數據於國內影視行業的意義
大數據為何近幾年大熱?
人類進入大數據時代,類似於生物學迎來了顯微鏡,天文學發現瞭望遠鏡,因為網路傳輸和計算機存儲運算能力的提高,交給了我們一把信息放大鏡,從此我們對現象的觀察進入一個新的領域。
其實自古就有多維度數據的挖掘行為,歷法的制定過程或許可以作為一個很好的例證,江湖上現在偶爾也會有關於林元帥諸葛軍師的傳說,自從計算機技術誕生之後,對數據的利用和處理一直在同步發展中,無論是分布處理還是並行處理,並不是一天就蹦躂到今日的技術高度,我們很多科學發現都是在近三十年之間才完成,正是得益於此。
但為何在這幾年「大數據」忽然大熱?原因其實很簡單,全球智能手機的普及。
隨著移動終端信息處理能力的提升,與用戶的交互界面不僅更加具備黏性,並且實現了全方位全時段互動,此時每個人的移動終端實際上就變成了一個數據記錄儀。它比PC所能獲取到的信息更加個人化,不僅暴露這個人的生活細節,位置動向,同時也記錄著他的消費習慣,人類第一次擁有了這么多數據的生產者。每一個元數據都可以直接掛鉤一份具體的支出額度,每一個數字都可以被貨幣量化,大數據的商業價值與各個企業的營收幾乎都可以直接掛鉤。所以,圍繞「大數據」來說故事迅速成為當下的主流。
但是揭開媒體的那些噱頭背後,你會發現,國內對復雜系統的研究,仍然是處於概念大於應用的階段,大部分行業對線性、封閉系統內的數據關系都沒辦法掌握,更不用說將大數據轉化成有價值的信息。而在影視行業,工業化體系處於剛剛起步的階段,很多從業人士連財務報表這種基礎數據都看不明白,去理解大數據的價值更是有些不可想像了。
大數據於國內影視行業的意義
大數據技術作為一種工具,其應用方向,無非三個方面,一是對過於和曾經的理解,二是對以後和將來的認知,三是對當下進行判斷並進行實時處理,影視行業大數據技術的應用如果想要有長足的發展,那麼在這三個方面都會面臨著一些需要解決的問題。
對過去和曾經的理解
既然是對已發生的進行判斷,就會涉及到數據採集,這個部分往往會引發爭論,中心議題是:到底多大才叫大,GB還是TB,PB還是EB?
如果我想要知道《致我們終將逝去的青春》這部差一點就可以歸類到文藝片的電影,為什麼在2013年上半年票房僅次於《西遊·降魔篇》,我是應該僅以社交媒體的傳播效率來進行數據的挖掘,還是要追溯到原著小說里的青春以及被電影宣傳所喚起的記憶?
將數據挖掘的范圍放在社交媒體的范疇,那麼通過對一部電影推廣過程的梳理,我們很容易通過數據制定出一張細化到分鍾的參考,以及觀眾會被什麼樣的宣傳內容所吸引,但是它仍然只是在描述表象。
如果觀察只停留在眼前,將無法找到最終的因果。我們必須對推動現象發生的機制進行論證,那麼我們該用什麼樣的體量來儲存和分析觀眾們的記憶,從而找到個人經歷和集體共鳴之間的關系?
在這個方面,如果只用社交媒體的數據進行相關性的分析,其實和我們日常所做的感性推導沒有太大區別,甚至還不如感性推導靈活,很容易因為數據的不夠全面犯下「黑天鵝」式的錯誤(在發現澳大利亞之前,西方認為只有白天鵝)。必須要追溯到成因階段更龐大的外部數據,比如主要觀眾群十年間的消費偏好及社會經歷,以及對他們觀影之前的心理活動進行統計分析。會不會太復雜?但是從數據挖掘的角度來說,只有在這個方向上進行努力才可能會提供實質性的價值。
或者說,我們也可以簡單粗獷一些,如麥特的負責人陳礪志所言,《致青春》的成功最主要的因素是因為趙薇的敬業與投入,以及她個人在行業的積累。
大家可以想一想,以上三個角度,哪個會更容易接近整個事件的核心。
對以後和將來的認知
大數據技術雖然可以讓人類對現象的理解進行更深入的探究,但是當對國產的影視項目前景進行預測,首先需要面對的問題是,我們仍然處於一個觀眾群體持續波動的時期。
在北美市場,貢獻50%票房的觀眾約占人口的10%,也就是3000萬左右,這部分群體基本上結構相當穩定。上世紀70年代末,當北美電影的平均製作預算開始攀升到1000萬美元以上,宣發費用達到500萬以上時,對觀眾的監測從階段性的調研逐漸轉變成常態性的監控。在計算機還只是個神話的時期,「好萊塢」是用人工+信件的形式,建立了最早的大范圍觀眾研究模型,這些歷史數據通過幾十年的積累,已經讓一部電影與觀眾之間的聯系變得非常透明。但即使是如此嚴謹的市場監控,近幾年也因為受到移動互聯的影響,觀眾去影院觀影的行為隨機性逐漸提高,導致傳統的觀眾研究模型頻頻出現一些問題。
反觀國內電影市場,差不多有三分之二的銀幕是在近三年之內才出現的,2010年時,我們所擁有的現代化銀幕不過才6223塊,而如今,這個數字差不多是17000。可想而知,影院目前所迎來的觀眾,基本上是近三年才開始逐漸培養去影院觀影的興趣,這種行為暫時還不能稱之為習慣。
所以說,中國電影市場目前的波動很難通過現有的技術手段完成監測,會因為存在有其他我們不可知的變數,而導致結果南轅北轍,這在統計學的回歸分析上被稱之為「變數遺漏偏差」,大數據技術目前所能覆蓋到的范圍並不能幫我們解決這個問題。我們還需要時間來不斷修正對市場數據的理解,觀眾也需要時間來不斷培養在影院觀影的習慣。
2013年上半年,幾乎所有從業者都對有動作元素的電影過於樂觀,而下半年,所有從業者包括我個人又會對以愛情元素為主的電影過分看好。從一些公司的大數據監測上來看,這種觀眾消費行為的變化已經反饋在可以被抓取的數據中,但是我們並不知道它所形成影響究竟該如何定量。也就是說我們可以看到趨勢,但是很難確定結果。
那麼,在如今的中國電影市場中,我們不如將大數據技術的應用方向,從對未來的預知上轉移到可以讓我們規避哪些操作上的錯誤,或許更具有現實意義。
對當下進行判斷並進行實時處理
現在對大數據的理解,往往會糾纏於第一個字「大」,而忽視了它的另外一個重要特徵「細」,其實後者才是最重要的,因為它會創造大數據真正的實用價值。
基於社交媒體的數據挖掘,其實已經可以做到讓我們將觀眾的分類從簡單的年齡、性別、職業等維度,落實到區域、活動空間以及性格特徵等等更為豐富的細節,在這樣的基礎上,我們要做的就是怎樣給觀眾提供個性化的影響,而不再是以電影為本位的共性宣傳。
舉例來說,當一名男性觀眾在某個媒介上看到的電影海報,可能是大長腿和小翹臀,但一個女性觀眾同時接觸這個媒介時,所看到的可能是一個賣萌的大叔。當陣地宣傳中的預告片貼片到一部好萊塢大片之前時,它可能主要是用來渲染情感或者突出搞笑,但同樣的一分多鍾,在視頻網站所上線的預告片,則被分成數個版本,用來對應每一個點擊背後用戶的個人資料。這樣,觀眾便會加入到生產的過程中,通過對觀眾偏好的快速處理,最終創造更適合於傳播的信息。
目前,數據調研公司參與電影推廣的過程,所做的仍然只是一個統計的工作,決策是在片方或者是公關公司,其實可以將決策機制與數據同樣進行細化,成為實時的互動,減少時間的損耗,提高電影推廣的效率。我們以前在電影的推廣中,常常會為如何照顧到大部分觀眾的興趣而頭疼,那麼換一種思路,用現有的觀眾數據進行群體的細分,給不同的觀眾群提供不一樣的信息,海納百川比光芒四射或許更符合當下社會化營銷的要義。
不過,這一切其實都只是理想化的願景,現實的情況是,中國的電影產業目前仍然是處於一個極其原始的狀態。
僅從電影投資成本的角度來說,目前所公映的電影,平均投資約在3000萬人民幣以內,不足500萬美元,這樣的投資規模在不考慮通脹以及觀眾收入的情況下,只相當於北美70年代初期的水平。面對這樣的市場環境,很多議題其實都顯得比較空洞,因為拍腦袋做決策雖然有著莫大的風險,但畢竟成本很低。
9. 《長津湖》票房比《戰狼2》多1億,打破紀錄89次,你如何看待這個數據
《長津湖》的票房比戰狼2還要優越。不僅僅是《長津湖》劇組們努力的結果,也代表了國產電影正在崛起的勢頭。
2022的1月16日,國產大片《長津湖》正式下映,根據大數據分析和統計,《長津湖》的票房達到了57.75億人民幣,而這一票房成績遠超吳京的《戰狼2》。除此之外,《長津湖》也打破了全球影史戰爭電影中的最高票房紀錄,根據長津湖的製作班底以及劇組導演介紹,他們已經開始開拍《長津湖》的續集製作,並且有望定檔於今年的春節。不少觀眾紛紛表示非常期待。
無論是《戰狼2》還是《長津湖》,他們創造的票房紀錄都代表著中國人對於電影製作的努力與追求。這樣的票房成績無疑給中國電影史交了最好的答卷。而他們也代表著中華人民共和國走出了海外得到更多國家的認可與好評。而這也間接代表了國產電影發展史上的好兆頭與發展趨勢。
總而言之,《長津湖》的票房成功絕不是偶然,我們應該對它的成功進行認可和贊賞。