1. 基於Pandas的數據分析平台,數據連接該不該用SqlAlchemy的ORM
一、開始使用:
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
DB_CONNECT_STRING = 'mysql+mysqldb://root:123@localhost/ooxx?charset=utf8'
engine = create_engine(DB_CONNECT_STRING, echo=True)
DB_Session = sessionmaker(bind=engine)
session = DB_Session()
這里的 DB_CONNECT_STRING 就是連接資料庫的路徑。「mysql+mysqldb」指定了使用 MySQL-Python 來連接,「root」和「123」分別是用戶名和密碼,「localhost」是資料庫的域名,「ooxx」是使用的資料庫名(可省略),「charset」指定了連接時使用的字元集(可省略)。
create_engine() 會返回一個資料庫引擎,echo 參數為 True 時,會顯示每條執行的 SQL 語句,生產環境下可關閉。
sessionmaker() 會生成一個資料庫會話類。這個類的實例可以當成一個資料庫連接,它同時還記錄了一些查詢的數據,並決定什麼時候執行 SQL 語句。由於 SQLAlchemy 自己維護了一個資料庫連接池(默認 5 個連接),因此初始化一個會話的開銷並不大。對 Tornado 而言,可以在 BaseHandler 的 initialize() 里初始化:
class BaseHandler(tornado.web.RequestHandler):
def initialize(self):
self.session = models.DB_Session()
def on_finish(self):
self.session.close()
對其他 Web 伺服器來說,可以使用 sqlalchemy.orm.scoped_session,它能保證每個線程獲得的 session 對象都是唯一的。不過 Tornado 本身就是單線程的,如果使用了非同步方式,就可能會出現問題,因此並沒使用它。
拿到 session 後,就可以執行 SQL 了:
session.execute('create database abc')
print session.execute('show databases').fetchall()
session.execute('use abc')
# 建 user 表的過程略
print session.execute('select * from user where id = 1').first()
print session.execute('select * from user where id = :id', {'id': 1}).first()
不過這和直接使用 MySQL-Python 沒啥區別;ORM 的方式,這也是採用 SQLAlchemy 的唯一原因。
於是來定義一個表:
from sqlalchemy import Column
from sqlalchemy.types import CHAR, Integer, String
from sqlalchemy.ext.declarative import declarative_base
BaseModel = declarative_base()
def init_db():
BaseModel.metadata.create_all(engine)
def drop_db():
BaseModel.metadata.drop_all(engine)
class User(BaseModel):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
name = Column(CHAR(30)) # or Column(String(30))
init_db()
declarative_base() 創建了一個 BaseModel 類,這個類的子類可以自動與一個表關聯。
以 User 類為例,它的 __tablename__ 屬性就是資料庫中該表的名稱,它有 id 和 name 這兩個欄位,分別為整型和 30 個定長字元。Column 還有一些其他的參數,我就不解釋了。
最後,BaseModel.metadata.create_all(engine) 會找到 BaseModel 的所有子類,並在資料庫中建立這些表;drop_all() 則是刪除這些表。
接著就開始使用這個表吧:
from sqlalchemy import func, or_, not_
user = User(name='a')
session.add(user)
user = User(name='b')
session.add(user)
user = User(name='a')
session.add(user)
user = User()
session.add(user)
session.commit()
query = session.query(User)
print query # 顯示SQL 語句
print query.statement # 同上
for user in query: # 遍歷時查詢
print user.name
print query.all() # 返回的是一個類似列表的對象
print query.first().name # 記錄不存在時,first() 會返回 None
# print query.one().name # 不存在,或有多行記錄時會拋出異常
print query.filter(User.id == 2).first().name
print query.get(2).name # 以主鍵獲取,等效於上句
print query.filter('id = 2').first().name # 支持字元串
query2 = session.query(User.name)
print query2.all() # 每行是個元組
print query2.limit(1).all() # 最多返回 1 條記錄
print query2.offset(1).all() # 從第 2 條記錄開始返回
print query2.order_by(User.name).all()
print query2.order_by('name').all()
print query2.order_by(User.name.desc()).all()
print query2.order_by('name desc').all()
print session.query(User.id).order_by(User.name.desc(), User.id).all()
print query2.filter(User.id == 1).scalar() # 如果有記錄,返回第一條記錄的第一個元素
print session.query('id').select_from(User).filter('id = 1').scalar()
print query2.filter(User.id > 1, User.name != 'a').scalar() # and
query3 = query2.filter(User.id > 1) # 多次拼接的 filter 也是 and
query3 = query3.filter(User.name != 'a')
print query3.scalar()
print query2.filter(or_(User.id == 1, User.id == 2)).all() # or
print query2.filter(User.id.in_((1, 2))).all() # in
query4 = session.query(User.id)
print query4.filter(User.name == None).scalar()
print query4.filter('name is null').scalar()
print query4.filter(not_(User.name == None)).all() # not
print query4.filter(User.name != None).all()
print query4.count()
print session.query(func.count('*')).select_from(User).scalar()
print session.query(func.count('1')).select_from(User).scalar()
print session.query(func.count(User.id)).scalar()
print session.query(func.count('*')).filter(User.id > 0).scalar() # filter() 中包含 User,因此不需要指定表
print session.query(func.count('*')).filter(User.name == 'a').limit(1).scalar() == 1 # 可以用 limit() 限制 count() 的返回數
print session.query(func.sum(User.id)).scalar()
print session.query(func.now()).scalar() # func 後可以跟任意函數名,只要該資料庫支持
print session.query(func.current_timestamp()).scalar()
print session.query(func.md5(User.name)).filter(User.id == 1).scalar()
query.filter(User.id == 1).update({User.name: 'c'})
user = query.get(1)
print user.name
user.name = 'd'
session.flush() # 寫資料庫,但並不提交
print query.get(1).name
session.delete(user)
session.flush()
print query.get(1)
session.rollback()
print query.get(1).name
query.filter(User.id == 1).delete()
session.commit()
print query.get(1)
二、進階的知識。
1)如何批量插入大批數據?
可以使用非 ORM 的方式:
session.execute(
User.__table__.insert(),
[{'name': `randint(1, 100)`,'age': randint(1, 100)} for i in xrange(10000)]
)
session.commit()
如何批量插入大批數據?
可以使用非 ORM 的方式:
session.execute(
User.__table__.insert(),
[{'name': `randint(1, 100)`,'age': randint(1, 100)} for i in xrange(10000)]
)
session.commit()
上面批量插入了 10000 條記錄,半秒內就執行完了;而 ORM 方式會花掉很長時間。
2)如何讓執行的 SQL 語句增加前綴?
使用 query 對象的 prefix_with() 方法:
session.query(User.name).prefix_with('HIGH_PRIORITY').all()
session.execute(User.__table__.insert().prefix_with('IGNORE'), {'id': 1, 'name': '1'})
3)如何替換一個已有主鍵的記錄?
使用 session.merge() 方法替代 session.add(),其實就是 SELECT + UPDATE:
user = User(id=1, name='ooxx')
session.merge(user)
session.commit()
或者使用 MySQL 的 INSERT … ON DUPLICATE KEY UPDATE,需要用到 @compiles 裝飾器,有點難懂,自己看吧:《SQLAlchemy ON DUPLICATE KEY UPDATE》 和 sqlalchemy_mysql_ext。
4)如何使用無符號整數?
可以使用 MySQL 的方言:
from sqlalchemy.dialects.mysql import INTEGER
id = Column(INTEGER(unsigned=True), primary_key=True)
5)模型的屬性名需要和表的欄位名不一樣怎麼辦?
開發時遇到過一個奇怪的需求,有個其他系統的表裡包含了一個「from」欄位,這在 Python 里是關鍵字,於是只能這樣處理了:
from_ = Column('from', CHAR(10))
6)如何獲取欄位的長度?
Column 會生成一個很復雜的對象,想獲取長度比較麻煩,這里以 User.name 為例:
User.name.property.columns[0].type.length
7)如何指定使用 InnoDB,以及使用 UTF-8 編碼?
最簡單的方式就是修改資料庫的默認配置。如果非要在代碼里指定的話,可以這樣:
class User(BaseModel):
__table_args__ = {
'mysql_engine': 'InnoDB',
'mysql_charset': 'utf8'
}
MySQL 5.5 開始支持存儲 4 位元組的 UTF-8 編碼的字元了,iOS 里自帶的 emoji(如 ?? 字元)就屬於這種。
如果是對表來設置的話,可以把上面代碼中的 utf8 改成 utf8mb4,DB_CONNECT_STRING 里的 charset 也這樣更改。
如果對庫或欄位來設置,則還是自己寫 SQL 語句比較方便,具體細節可參考《How to support full Unicode in MySQL databases》。
不建議全用 utf8mb4 代替 utf8,因為前者更慢,索引會佔用更多空間。
8)如何設置外鍵約束?
from random import randint
from sqlalchemy import ForeignKey
class User(BaseModel):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
age = Column(Integer)
class Friendship(BaseModel):
__tablename__ = 'friendship'
id = Column(Integer, primary_key=True)
user_id1 = Column(Integer, ForeignKey('user.id'))
user_id2 = Column(Integer, ForeignKey('user.id'))
for i in xrange(100):
session.add(User(age=randint(1, 100)))
session.flush() # 或 session.commit(),執行完後,user 對象的 id 屬性才可以訪問(因為 id 是自增的)
for i in xrange(100):
session.add(Friendship(user_id1=randint(1, 100), user_id2=randint(1, 100)))
session.commit()
session.query(User).filter(User.age < 50).delete()
執行這段代碼時,應該會遇到一個錯誤:
sqlalchemy.exc.IntegrityError: (IntegrityError) (1451, 'Cannot delete or update a parent row: a foreign key constraint fails (`ooxx`.`friendship`, CONSTRAINT `friendship_ibfk_1` FOREIGN KEY (`user_id1`) REFERENCES `user` (`id`))') 'DELETE FROM user WHERE user.age < %s' (50,)原因是刪除 user 表的數據,可能會導致 friendship 的外鍵不指向一個真實存在的記錄。在默認情況下,MySQL 會拒絕這種操作,也就是 RESTRICT。InnoDB 還允許指定 ON DELETE 為 CASCADE 和 SET NULL,前者會刪除 friendship 中無效的記錄,後者會將這些記錄的外鍵設為 NULL。
除了刪除,還有可能更改主鍵,這也會導致 friendship 的外鍵失效。於是相應的就有 ON UPDATE 了。其中 CASCADE 變成了更新相應的外鍵,而不是刪除。
而在 SQLAlchemy 中是這樣處理的:
class Friendship(BaseModel):
__tablename__ = 'friendship'
id = Column(Integer, primary_key=True)
user_id1 = Column(Integer, ForeignKey('user.id', ondelete='CASCADE', onupdate='CASCADE'))
user_id2 = Column(Integer, ForeignKey('user.id', ondelete='CASCADE', onupdate='CASCADE'))
9)如何連接表?
from sqlalchemy import distinct
from sqlalchemy.orm import aliased
Friend = aliased(User, name='Friend')
print session.query(User.id).join(Friendship, User.id == Friendship.user_id1).all() # 所有有朋友的用戶
print session.query(distinct(User.id)).join(Friendship, User.id == Friendship.user_id1).all() # 所有有朋友的用戶(去掉重復的)
print session.query(User.id).join(Friendship, User.id == Friendship.user_id1).distinct().all() # 同上
print session.query(Friendship.user_id2).join(User, User.id == Friendship.user_id1).order_by(Friendship.user_id2).distinct().all() # 所有被別人當成朋友的用戶
print session.query(Friendship.user_id2).select_from(User).join(Friendship, User.id == Friendship.user_id1).order_by(Friendship.user_id2).distinct().all() # 同上,join 的方向相反,但因為不是 STRAIGHT_JOIN,所以 MySQL 可以自己選擇順序
print session.query(User.id, Friendship.user_id2).join(Friendship, User.id == Friendship.user_id1).all() # 用戶及其朋友
print session.query(User.id, Friendship.user_id2).join(Friendship, User.id == Friendship.user_id1).filter(User.id < 10).all() # id 小於 10 的用戶及其朋友
print session.query(User.id, Friend.id).join(Friendship, User.id == Friendship.user_id1).join(Friend, Friend.id == Friendship.user_id2).all() # 兩次 join,由於使用到相同的表,因此需要別名
print session.query(User.id, Friendship.user_id2).outerjoin(Friendship, User.id == Friendship.user_id1).all() # 用戶及其朋友(無朋友則為 None,使用左連接)
-
2. pandas什麼意思
pandas的意思是熊貓。
一、讀音:英 [ˈpændə];美 [ˈpændə]
二、釋義:大熊貓;大貓熊;小熊貓,小貓熊(產於亞洲,毛棕紅色,尾巴粗長)。
三、用法:
1、
譯文:大熊貓是一種殘存的古動物。
2、
譯文:熊貓是中國的國寶。
四、短語搭配:
panda diplomacy:熊貓外交
PANDA MAN:熊貓人 ; 港台劇 ; 名稱
(2)pandas電影數據分析擴展閱讀:
類似的熊種的英語還有:black bear、polar bear
1、black bear
讀音:英 [blæk beə(r)];美 [blæk ber]
釋義:黑熊
用法:Blackbugbitabigblackbear
譯文:黑蟲子咬了一隻大黑熊。
2、polar bear
讀音:英 [ˈpəʊlə beə(r)];美 [ˈpoʊlər ber]
釋義:北極熊;白熊
用法:Thepolarbear'swhitefurisanaturalcamouflage
譯文:北極熊的白色毛皮是天然的保護色。
3. Python想要從事數據分析工作,都要學習哪些知識
就目前來說Python是人工智慧的最佳編程語言,想要從事數據分析的話需要學習以下知識:
1、熟練Python語言基礎,掌握數據分析建模理論、熟悉數據分析建模過程;
2、熟練NumPy、SciPy和Pandas數據分析工具的使用;特別是Pandas和Numpy,Pandas是Python中一種數據分析的包,而Numpy是一個可以藉助Python實現科學計算的包,可以計算和儲存大型矩陣。
3、熟練掌握數據可視化工具,結合Python學習統計學、結合Excel學習SQL,然後結合Excel數據分析來學習numpy、pandas等以及數據可視化。
4. 怎麼利用pandas做數據分析
Pandas是Python下一個開源數據分析的庫,它提供的數據結構DataFrame極大的簡化了數據分析過程中一些繁瑣操作。
1. 基本使用:創建DataFrame. DataFrame是一張二維的表,大家可以把它想像成一張Excel表單或者Sql表。Excel 2007及其以後的版本的最大行數是1048576,最大列數是16384,超過這個規模的數據Excel就會彈出個框框「此文本包含多行文本,無法放置在一個工作表中」。Pandas處理上千萬的數據是易如反掌的sh事情,同時隨後我們也將看到它比SQL有更強的表達能力,可以做很多復雜的操作,要寫的code也更少。
5. pandas是什麼意思
pandas是python的一個數據分析的庫,可以讀取excel、csv、html中的table等等
可以做數據的處理(值替換replace、關聯merge、分組group計算等等)
具體請參照:
網路
https://ke..com/item/pandas/17209606
官方手冊
http://pandas.pydata.org/pandas-docs/stable
6. 有人可以代做一下pandas數據分析嗎
下載個Anaconda裝一下,裡面的Spyder非常好用,能直觀地看到你pandas處理的表格(DataFrame變數)
你會發現python很簡單~
7. 求助python大神,工作實例pandas數據分析
你的意思是比較每台機的寬,不符合的挑出來? 那每台機的返回值是什麼?
你需要些一個函數func func把行變數作為參數,能對每一行操作,然後dataframe.apply(func, axis=1)
8. 如何利用python進行數據分析
利用python進行數據分析
鏈接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ
本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。
9. 用pandas做數據分析
這個軟體做數據分析是非常不錯的,值得信賴。
10. pandas教程內容是什麼
pandas是基於NumPy的一種工具,該工具是為解決數據分析任務而創建的。
Pandas納入了大量庫和一些標準的數據模型,提供了高效地操作大型數據集所需的工具。pandas提供了大量能使我們快速便捷地處理數據的函數和方法。你很快就會發現,它是使Python成為強大而高效的數據分析環境的重要因素之一。
數據結構
Series:一維數組,與Numpy中的一維array類似。二者與Python基本的數據結構List也很相近。Series如今能保存不同種數據類型,字元串、boolean值、數字等都能保存在Series中。
Time- Series:以時間為索引的Series。
DataFrame:二維的表格型數據結構。很多功能與R中的data.frame類似。可以將DataFrame理解為Series的容器。
Panel:三維的數組,可以理解為DataFrame的容器。
Panel4D:是像Panel一樣的4維數據容器。
PanelND:擁有factory集合,可以創建像Panel4D一樣N維命名容器的模塊。