❶ python爬蟲菜鳥一枚,請教一下這個問題
這個結構很簡單,用不著xpath,bs4的find_all就行了
❷ python基礎 爬蟲項目有哪些
我們上篇才講了面試中需要准備的內容,關於最後一點可能講的不是很詳細,小夥伴們很有對項目這塊很感興趣。畢竟所有的理論知識最後都是通過實踐檢驗的,如果能有拿得出手的項目,面試中會大大的加分。下面小編就來跟大講講python的爬蟲項目有哪些以及該學點什麼內容。
wesome-spider
這一項目收集了100多個爬蟲,默認使用了Python作為爬蟲語言。你既可以在這個項目中,找到爬取Bilibili視頻的爬蟲,也可以使用爬蟲,通過豆瓣評分和評價人數等各項數據,來挖掘那些隱藏的好書,甚至還可以用來爬取京東、鏈家、網盤等生活所需的數據。此外,這個項目還提供了一些很有意思的爬蟲,比如爬取神評論、妹子圖片、心靈毒雞湯等等,既有實用爬蟲,也有惡搞自嗨,滿足了大部分人實用爬蟲的需求。
Nyspider
Nyspider也非常厲害,如果你想獲得「信息」,它是一個不錯的選擇。在這個項目里,你既能獲取鏈家的房產信息,也可以批量爬取A股的股東信息,貓眼電影的票房數據、還可以爬取獵聘網的招聘信息、獲取融資數據等等,可謂是爬取數據,獲取信息的好手。
python-spider
這個項目是ID為Jack-Cherish的東北大學學生整理的python爬蟲資料,涵蓋了很多爬蟲實戰項目,如下載漫畫、答題輔助系統、搶票小助手等等等等。如果你已經學會了爬蟲,急切得像找一些項目練手,這里就可以滿足你的這一需求。當然,W3Cschool上也有很多爬蟲實戰項目,有需要的同學,也可以拿來作為練習使用。
以上的3個模塊基於GitHub中的部分內容,感興趣的小夥伴也可以了解下其他的模塊,畢竟GitHub使用也比較廣泛。更多Python學習推薦:PyThon學習網教學中心。
❸ python爬蟲抓取電影top20排名怎麼用
日長籬落無人過,唯有蜻蜓蛺蝶飛.
❹ python 爬蟲求思路
你用python做什麼類型的爬蟲?
不一定要自己做,可以用別人開源的!
❺ 如何入門 Python 爬蟲
你需要學習
基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom Filters by Example
如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現是python-rq: https://github.com/nvie/rq
rq和Scrapy的結合:darkrho/scrapy-redis · GitHub
後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)
以下是短話長說:
說說當初寫的一個集群爬下整個豆瓣的經驗吧。
1)首先你要明白爬蟲怎樣工作。
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?
很簡單
import Queue
initial_page = "http://www.renminribao.com"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example
注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...
那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)
有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...
及時更新(預測這個網頁多久會更新一次)
❻ python 爬蟲求教
python爬蟲,requests非常好用,建議使用。匹配結果使用re正則,列:
#-*-coding:utf-8-*-
importre
str1="""
<spanclass="title">尋夢環游記</span>
...
<spanclass="rating_num"property="v:average">9.0</span>
"""
title=re.search(r'<spanclass="title">(.*?)</span>',str1)
iftitle:
print(title.group(1))
rating=re.search(r'<spanclass="rating_num"property="v:average">(.*?)</span>',str1)
ifrating:
print(rating.group(1))
❼ 怎樣用python獲取電影
實驗室這段時間要採集電影的信息,給出了一個很大的數據集,數據集包含了4000多個電影名,需要我寫一個爬蟲來爬取電影名對應的電影信息。
其實在實際運作中,根本就不需要爬蟲,只需要一點簡單的Python基礎就可以了。
前置需求:
Python3語法基礎
HTTP網路基礎
===================================
第一步,確定API的提供方。IMDb是最大的電影資料庫,與其相對的,有一個OMDb的網站提供了API供使用。這家網站的API非常友好,易於使用。
第二步,確定網址的格式。
第三步,了解基本的Requests庫的使用方法。
❽ python爬蟲抓取電影top20排名怎麼寫
初步接觸python爬蟲(其實python也是才起步),發現一段代碼研究了一下,覺得還比較有用處,Mark下。
上代碼:
#!/usr/bin/python#coding=utf-8#Author: Andrew_liu#mender:cy"""
一個簡單的Python爬蟲, 用於抓取豆瓣電影Top前100的電影的名稱
Anthor: Andrew_liu
mender:cy
Version: 0.0.2
Date: 2017-03-02
Language: Python2.7.12
Editor: JetBrains PyCharm 4.5.4
"""import stringimport reimport urllib2import timeclass DouBanSpider(object) :
"""類的簡要說明
主要用於抓取豆瓣Top100的電影名稱
Attributes:
page: 用於表示當前所處的抓取頁面
cur_url: 用於表示當前爭取抓取頁面的url
datas: 存儲處理好的抓取到的電影名稱
_top_num: 用於記錄當前的top號碼
"""
def __init__(self):
self.page = 1
self.cur_url = "h0?start={page}&filter=&type="
self.datas = []
self._top_num = 1
print u"豆瓣電影爬蟲准備就緒, 准備爬取數據..."
def get_page(self, cur_page):
"""
根據當前頁碼爬取網頁HTML
Args:
cur_page: 表示當前所抓取的網站頁碼
Returns:
返回抓取到整個頁面的HTML(unicode編碼)
Raises:
URLError:url引發的異常
"""
url = self.cur_url try:
my_page = urllib2.urlopen(url.format(page=(cur_page - 1) * 25)).read().decode("utf-8") except urllib2.URLError, e: if hasattr(e, "code"): print "The server couldn't fulfill the request."
print "Error code: %s" % e.code elif hasattr(e, "reason"): print "We failed to reach a server. Please check your url and read the Reason"
print "Reason: %s" % e.reason return my_page def find_title(self, my_page):
"""
通過返回的整個網頁HTML, 正則匹配前100的電影名稱
Args:
my_page: 傳入頁面的HTML文本用於正則匹配
"""
temp_data = []
movie_items = re.findall(r'<span.*?class="title">(.*?)</span>', my_page, re.S) for index, item in enumerate(movie_items): if item.find(" ") == -1:
temp_data.append("Top" + str(self._top_num) + " " + item)
self._top_num += 1
self.datas.extend(temp_data) def start_spider(self):
"""
爬蟲入口, 並控制爬蟲抓取頁面的范圍
"""
while self.page <= 4:
my_page = self.get_page(self.page)
self.find_title(my_page)
self.page += 1def main():
print u"""
###############################
一個簡單的豆瓣電影前100爬蟲
Author: Andrew_liu
mender: cy
Version: 0.0.2
Date: 2017-03-02
###############################
"""
my_spider = DouBanSpider()
my_spider.start_spider()
fobj = open('/data/moxiaokai/HelloWorld/cyTest/blogcode/top_move.txt', 'w+') for item in my_spider.datas: print item
fobj.write(item.encode("utf-8")+'
')
time.sleep(0.1) print u"豆瓣爬蟲爬取完成"if __name__ == '__main__':
main()
運行結果: